跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王奕力
研究生(外文):Wang Yi-Li
論文名稱:熱休克蛋白90抑制劑對大鼠內毒素血症之保護作用及機轉探討
論文名稱(外文):Beneficial Effects and Mechanisms of Action of HSP90 Inhibitors in Endotoxemic Rats
指導教授:李燕媚
指導教授(外文):Lee Yen-Mei
口試委員:蘇銘嘉顏茂雄吳錦楨李燕媚鄭寶雲
口試日期:2015-05-04
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:144
外文關鍵詞:HSP90 inhibitorHSP70LPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
敗血症為細菌感染之後造成的全身性免疫反應,內毒素為誘發敗血症的重要因子。體內的免疫系統在內毒素刺激下發生過度反應,細胞激素以及自由基大量形成,影響正常的生理功能,而對體細胞和臟器產生攻擊而受損,最後導致多重器官衰竭、瀰漫性凝血,以及死亡。熱休克蛋白90和許多疾病相關的蛋白具有交互作用,若能有效的抑制熱休克蛋白90能有效的改善如癌症等相關的疾病。熱休克蛋白70為體內重要的保護因子之一,在疾病發生時能有效的對抗自由基以及細胞激素的攻擊。本論文利用兩種不同的熱休克蛋白90抑制劑進行研究。Celastrol (雷公藤紅素) 為中草藥雷公藤的根部萃取物之一,具有抗氧化及抗發炎的能力,可有效抑制熱休克蛋白90與其伴隨蛋白cdc37的交互作用,已常被使用於發炎相關的病症,例如:退化性關節炎以及癌症相關的研究上。本實驗中將麻醉的Wistar公鼠由靜脈注射內毒素LPS (10 mg/kg),Celastrol預處理組 (0.5及 1 mg/kg) 於內毒素給予前兩小時,治療組 (1 mg/kg) 則於內毒素給予三十分鐘後由靜脈注射給予。實驗結果發現,在內毒素誘發敗血症八小時之後,Celastrol處理的組別都可以回復因內毒素血症造成的低血壓和心跳下降,保護血管並維持其血管功能。因內毒素血症造成上升的ALT、BUN、LDH可以有效的被降低。血管中的超氧陰離子以及心臟中的GSH含量在預先給予Celastrol的組別皆有改善的效果。HO-1和HSP70的組織蛋白中的表現量有上升的情形。iNOS的表現量在給予Celastrol的組別可抑制其表現,透過抑制NF-kappa B中p65磷酸化的比例,造成NO的產量下降,減少血壓下降的影響及自由基的風險。在免疫方面,Celastrol可有效抑制血漿中及組織由LPS所誘發的TNF-α濃度,達到抗發炎的效果。Celastrol可有效抑制內毒素所造成的Caspase 3活性上升,達到抗凋亡作用。另一熱休克蛋白90抑制劑為17-DMAG,可抑制熱休克蛋白90的ATP水解酶活性,而有效的增加熱休克蛋白70的表現量。因此第二部份實驗目的在探討由內毒素誘發嚴重內毒素血症暨瀰漫性凝血之模式中17-DMAG的抗氧化、抗發炎、抗凋亡,以及抗凝血功能。本實驗模式將麻醉的Wistar公鼠以內毒素LPS (30 mg/kg) 持續靜脈注射四小時,並於六小時為實驗終點。17-DMAG (5 mg/kg) 則於LPS給予前二十小時腹腔注射給藥。實驗結果顯示:當給予17-DMAG時,相較於LPS组,能有效預防改善肝、腎功能,降低肝臟損傷、肺臟嗜中性球浸潤及減少血漿中TNF-α和IL-6上升。此外,給予17-DMAG處理組顯著的縮短凝血時間的延長及減少肺臟中PAI-1蛋白表現,明顯改善血小板數目的減少。在心臟組織中的超氧陰離子下降,增加GSH含量。給予LPS 六小時後,組織中iNOS表現與血中NO濃度均上升,但在給予17-DMAG處理有顯著減少。17-DMAG可有效降低內毒素所造成的Caspase 3活性上升,而達到抗凋亡作用。17-DMAG減少細胞激素IL-6釋放、抑制Caspase 3活性及降低 iNOS/NO表現等作用可被熱休克蛋白HSP70抑制劑 Quercetin 所拮抗。本篇結論,在內毒素血症大鼠模式中,熱休克蛋白90抑制劑可改善多重器官功能、具抗氧化、抗凋亡、以及抗發炎作用,此可能與誘導熱休克蛋白70 及 HO-1 生成有關。
Sepsis is a systemic inflammatory disorder, accompanied with elevated oxidative stress, leading to multiple organ dysfunction syndrome (MODS), and disseminated intravascular coagulation (DIC). HSP90 is one chaperone protein to refold the abnormal proteins. HSP90 has been reported to be up-regulated in different diseases. HSP90 inhibitors were reported to possess anti-inflammatory effects, associated with activation of the HSF-1, leading to induction of HSP70 production. HSP70 is another chaperone protein among all organs. HSP70 can refold the misfolding or unfolding proteins. HSP70 plays an important role in maintaining cellular homeostasis to defend organs from bacterial infection and acute inflammation-evoked damages. In this study, we evaluated benefical effects of two HSP90 inhibitors, celastrol and 17-Dimethyl-aminoethylamino- 17-demethoxygeldanamycin (17-DMAG) on sepsis induced by lipopolysaccharide (LPS) in rats. Celastrol, a quinone methide extracted from the root of Tripterygium wilfordii Hook, possesses anti-oxidant and anti-inflammatory effects. Celastrol (0.5 and 1.0 mg/kg, i.v.) was administered to anaesthetized rats 2 h before or 30 min after LPS challenge (10 mg/kg, i.v.). Eight hours later, cardiac and aortic protein expression related to inflammatory responses, superoxide anion production, and reduced glutathione (GSH) level were measured. Treatment with celastrol prevented circulatory failure (bradycardia and hypotension) 8 h after LPS challenge. The plasma levels of ALT, LDH, TNF-α, and nitric oxide (NO) metabolites were increased markedly during sepsis, which significantly reduced after celastrol treatments. Celastrol attenuated iNOS, TNF-α, NF-κB phospho-p65 expression, superoxide anion production, and caspase 3 activity in the cardiovascular system, all of which were markedly elevated after LPS challenge. Furthermore, celastrol induced HO-1 and HSP70 expression via increases in nuclear levels of Nrf2 and HSF-1, respectively, and increased the levels of reduced form of glutathione (GSH) in heart 8 h after LPS challenge. On the other hand, 17-DMAG, an HSP 90 inhibitor, has been reported to possess anti-inflammatory effects. In this study, the beneficial effects of 17-DMAG on MODS and DIC induced by LPS (30 mg/kg i.v. infused for 4 h) were evaluated in anesthetized rats. Pretreatment with 17-DMAG (5 mg/kg, i.p.) 20 h prior to LPS initiation significantly increased survival rate, and prevented hypotension 6 h after LPS initiation. Plasma levels of ALT, CPK, LDH, CRE, NO metabolites, IL-6, and TNF-α significantly elevated 2 or 6 h after LPS initiation, all of which were significantly reduced by 17-DMAG. 17-DMAG suppressed superoxide anion production and caspase 3 activation caused by LPS, and increased the levels of GSH in heart. LPS induced a pronounced decrease in platelet count and the prolongation of prothrombin time, which were improved by 17-DMAG. 17-DMAG markedly induced HSP70 and HO-1, and suppressed iNOS protein expression in livers, lungs, and/or hearts 6 h after LPS initiation. Pretreatment with high dose of quercetin (400 mg/kg, i.p.), as an HSP70 inhibitor 6 h prior to LPS given, reversed the beneficial effects of 17-DMAG on plasma levels of ALT, CPK, CRE, IL-6, and NO metabolites, iNOS induction and caspase-3 activation. In conclusion, celastrol and 17-DMAG possess the anti-inflammatory and antioxidant effects on LPS-induced acute inflammation, which is associated with induction of HSP70 and HO-1, leading to prevent MODS in sepsis. HSP90 inhibitors might be considered as a novel therapeutic strategy in prevention of sepsis-induced MODS.
頁次

目錄 I
圖表目錄 V
中文摘要 XII
英文摘要 XV
第一章 緒言
第一節 敗血症及敗血性休克簡介 1
第二節 內毒素引起的敗血症之致病機轉 1
第三節 熱休克蛋白 3
第四節 細胞激素、發炎和內毒素血症之間的關係 6
第五節 內毒素血症對於心血管功能的影響 8
第六節 內毒素血症與瀰漫性血管內凝血反應 8
第七節 NO/iNOS與內毒素血症之間的關係 9
第八節 CO/HO-1與內毒素血症之間的關係 10
第九節 Celastrol簡介及其相關研究 11
第十節 17-DMAG簡介及其相關研究 12
第十一節 動物模式 14
第二章 實驗目的 15
第三章 材料與方法 16
第一節 實驗藥品與其來源 16
第二節 活體實驗 19
第三節 活體外 (ex vivo) 實驗 28
第四節 數據分析 39
第四章 實驗結果
第一部分:雷公藤紅素 (Celastrol) 與內毒素血症
第一節 Celastrol 對內毒素血症之血流動力學影響 40
第二節 Celastrol 對內毒素血症引起器官功能異常之影響 41
第三節 Celastrol對LPS引起細胞激素TNF-α含量變化 44
第四節 Celastrol對LPS引起之自由基及氧化壓力的影響 45
第五節 Celastrol對LPS引起ㄧ氧化氮 (NO) 生成量增加的影響 46
第六節 Celastrol 對 LPS 引起各種蛋白質表現之影響 47
第七節 Celastrol對LPS引起之血糖變化之影響 50
第八節 存活率分析 51
第二部分:17-DMAG與內毒素血症
第一節 17-DMAG對LPS造成血流動力學變化之影響 51
第二節 17-DMAG對LPS引起器官功能異常之影響 53
第三節 17-DMAG對LPS引起血中NO生成量增加的影響 55
第四節 17-DMAG對LPS引起體內細胞激素含量之影響 56
第五節 17-DMAG對LPS引起之自由基及氧化壓力的影響 57
第六節 17-DMAG對LPS引起之瀰漫性凝血現象之影響 58
第七節 17-DMAG對LPS引起各種蛋白質表現之影響 59
第八節 由組織切片觀察17-DMAG對LPS引起之肝肺臟損傷
及發炎情形 61
第九節 存活率分析 62

第五章 討論
第一部分 Celastrol 對於大鼠內毒素血症的影響 63
第一節 LPS 造成循環系統損傷及其機轉 63
第二節 Celastrol 對於循環系統的保護機轉 64
第三節 Celastrol 改善內毒素血症所造成的多重器官衰竭 65
第四節 Celastrol 對大鼠內毒素血症所造成的發炎情形之
抑制可能機轉 68
第五節 Celastrol對大鼠內毒素血症所造成的氧化壓力之
抑制可能機轉 69
第二部分 17-DMAG 對於大鼠內毒素血症的影響 69
第一節 17-DMAG對於發炎反應的保護機轉 70
第二節 17-DMAG 對於凝血系統的保護機轉 71
第三節 17-DMAG 改善內毒素血症所造成的多重器官衰竭 72
第四節 17-DMAG 對大鼠內毒素血症所造成的心臟組織
凋亡情形之抑制可能機轉 74
第五節17-DMAG對大鼠內毒素血症所造成的氧化壓力之
抑制可能機轉 75
第六章 結論 76
第七章 未來展望 77
參考文獻 124










表目錄
頁次
Table 1. Effects of celastrol (Cel) on blood glucose (BG) in rats
with sepsis induced by LPS challenge 78





















圖目錄
頁次
Fig. 1-1. Effects of celastrol (Cel) on mean arterial blood pressure (MAP) in rats with sepsis induced by LPS challenge. 79

Fig. 1-2. Effects of celastrol (Cel) on heart rate in rats with sepsis
induced by LPS challenge 80

Fig. 1-3. Effects of celastrol (Cel) on rate-pressure product in rats
with sepsis induced by LPS challenge 81

Fig. 1-4. Effects of celastrol (Cel) on norepinephrine (NE)-elicited
pressor response in rats with sepsis induced by LPS
challenge 82

Fig. 1-5. Effects of celastrol (Cel) on vascular reactivity in rats with
sepsis induced by LPS challenge 83

Fig. 1-6. Effects of celastrol (Cel) on caspase 3 activity in heart
tissue in rats with sepsis induced by LPS challenge 84

Fig. 1-7. Effects of celastrol (Cel) on plasma levels of alanine
aminotransferase (ALT) in rats with sepsis induced by
LPS challenge 85

Fig. 1-8. Effects of celastrol (Cel) on plasma levels of lactate dehydrogenase (LDH) in rats with sepsis induced by LPS challenge 86

Fig. 1-9. Effects of celastrol (Cel) on plasma levels of blood urea
nitrogen (BUN) in rats with sepsis induced by LPS
challenge 87

Fig. 1-10. Effects of celastrol (Cel) on plasma concentration of
TNF- expression 8 h after LPS challenge in rats 88

Fig. 1-11. Effects of celastrol (Cel) on cardiac TNF- proteins
expression 8 h after LPS challenge in rats 89

Fig. 1-12. Effects of celastrol (Cel) on aortic TNF-α proteins
expression 8 h after LPS challenge in rats 90

Fig. 1-13. Effects of celastrol (Cel) on superoxide anion production
in aorta 8 h after LPS challenge in rats 91

Fig. 1-14. Effects of celastrol (Cel) on reduced form of glutathione
(GSH) expression (A) and GSH/GSSG ratio (B) in the
heart 8 h after LPS challenge in rats 92

Fig. 1-15. Effects of celastrol (Cel) on plasma levels of NO
metabolites 8 h after LPS challenge in rats 93

Fig. 1-16. Effects of celastrol (Cel) on iNOS protein expression in
heart 8 h after LPS challenge in rats 94

Fig. 1-17. Effects of celastrol (Cel) on iNOS protein expression in
aorta 8 h after LPS challenge in rats 95

Fig. 1-18. Effects of celastrol (Cel) on phospho-p65 protein expression in heart 8 h after LPS challenge in rats. 96

Fig. 1-19. Effects of celastrol (Cel) on HO-1 protein expression in
heart 8 h after LPS challenge in rats 97

Fig. 1-20. Effects of celastrol (Cel) on HO-1 protein expression in
aorta 8 h after LPS challenge in rats 98

Fig. 1-21. Effects of celastrol (Cel) on nuclear Nrf2 protein expression in aorta 8 h after LPS challenge in rats 99

Fig. 1-22. Effects of celastrol (Cel) on HSP70 protein expression in
heart 8 h after LPS challenge in rats 100

Fig. 1-23. Effects of celastrol (Cel) on HSP70 protein expression in
aorta 8 h after LPS challenge in rats 101
Fig. 1-24. Effects of celastrol (Cel) on nuclear HSF-1 protein
expression in aorta 8 h after LPS challenge in rats 102

Fig. 2-1. Effects of 17-DMAG (17D) on mean arterial blood pressure (MAP) in rats with endotoxemia induced by LPS injection 103

Fig. 2-2. Effects of 17-DMAG (17D) on heart rate (HR) in rats with endotoxemia induced by LPS injection 104

Fig. 2-3. Effects of 17-DMAG (17D) on alanine aminotransferase (ALT) in rats with endotoxemia induced by LPS injection 105

Fig. 2-4. Effects of 17-DMAG (17D) on creatine phosphokinase (CPK) in rats with endotoxemia induced by LPS injection 106

Fig. 2-5. Effects of 17-DMAG (17D) on lactate dehydrogenase (LDH)
in rats with endotoxemia induced by LPS injection 107

Fig. 2-6. Effects of 17-DMAG (17D) on the changes of creatinine
(ΔCRE) in rats with endotoxemia induced by LPS injection 108

Fig. 2-7. Effects of 17-DMAG (17D) on caspase 3 activity in heart
of rats 6 hours after being subjected to LPS administration 109

Fig. 2-8. Effects of 17-DMAG (17D) on plasma NO concentration
6 h after LPS injection in rats 110

Fig. 2-9. Effects of 17-DMAG (17D) on plasma TNF-α concentration
2 h after LPS initiation in rats 111

Fig. 2-10. Effects of 17-DMAG (17D) on plasma IL-6 concentration
6 h after LPS initiation in rats 112

Fig. 2-11. Effects of 17-DMAG (17D) on superoxide anion production
in heart of rats 6 h after LPS initiation 113

Fig. 2-12. Effects of 17-DMAG (17D) on glutathione expression
in heart of rats 6 hours after being subjected to LPS
administration 114

Fig. 2-13. Effects of 17-DMAG (17D) on platelet count in blood
of rats 6 h after LPS initiation 115

Fig. 2-14. Effects of 17-DMAG (17D) on prothrombin time in
blood of rats 6 h after LPS initiation 116

Fig. 2-15. Effects of 17-DMAG (17D) on PAI-1 protein
expression in lungs of rats 6 h after LPS initiation 117

Fig. 2-16. Effects of 17-DMAG (17D) on HSP70 protein
expression in heart (A), lung (B), and liver (C) of
rats 6 h after LPS initiation 118

Fig. 2-17. Effects of 17-DMAG (17D) on iNOS protein
expression in heart (A), lung (B), and liver (C) of
rats 6 h after LPS initiation 119

Fig. 2-18. Effects of 17-DMAG (17D) on HO-1 protein
expression in heart (A), lung (B), and liver (C) of
rats 6 h after LPS intiation 120

Fig. 2-19. Effects of 17-DMAG (17D) on histologic studies of
representative lung sections 121

Fig. 2-20. Effects of 17-DMAG (17D) on histologic studies of
liver sections 122
Fig. 3 Summary of HSP90 Inhibitors in Endotoxemic Rats 123


Ambade A, Catalano D, Lim A, Mandrekar P (2012). Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55(5): 1585-1595.
Asakura H (2006). [Diagnosis of disseminated intravascular coagulation (DIC): characteristic of DIC caused by infection]. [Rinsho ketsueki] The Japanese Journal of Clinical Hematology 47(6): 471-478.
Asakura H, Okudaira M, Yoshida T, Ontachi Y, Yamazaki M, Morishita E, Miyamoto K, Nakao S (2002). Induction of vasoactive substances differs in LPS-induced and TF-induced DIC models in rats. Thrombosis and Haemostasis 88(4): 663-667.
Asakura H, Suga Y, Aoshima K, Ontachi Y, Mizutani T, Kato M, Saito M, Morishita E, Yamazaki M, Takami A, Miyamoto K, Nakao S (2002). Marked difference in pathophysiology between tissue factor- and lipopolysaccharide-induced disseminated intravascular coagulation models in rats. Critical Care Medicine 30(1): 161-164.
Ball HA, Cook JA, Wise WC, Halushka PV (1986). Role of thromboxane, prostaglandins and leukotrienes in endotoxic and septic shock. Intensive Care Medicine 12(3): 116-126.
Barreiro E, Comtois AS, Mohammed S, Lands LC, Hussain SN (2002). Role of heme oxygenases in sepsis-induced diaphragmatic contractile dysfunction and oxidative stress. American Journal of Physiology: Lung Cellular and Molecular Physiology 283(2): L476-484.
Barron RL (1993). Pathophysiology of septic shock and implications for therapy. Clinical Pharmacy 12(11): 829-845.
Beckman JS, Crow JP (1993). Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochemical Society Transactions 21(2): 330-334.
Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2(8): 469-475.
Bellmann K, Jaattela M, Wissing D, Burkart V, Kolb H (1996). Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Letters 391(1-2): 185-188.
Berkowitz DE (2007). Myocyte nitroso-redox imbalance in sepsis: NO simple answer. Circulation Research 100(1): 1-4.
Bernardini C, Zannoni A, Turba ME, Fantinati P, Tamanini C, Bacci ML, Forni M (2005). Heat shock protein 70, heat shock protein 32, and vascular endothelial growth factor production and their effects on lipopolysaccharide-induced apoptosis in porcine aortic endothelial cells. Cell Stress & Chaperones 10(4): 340-348.
Beutler B, Cerami A (1987). Cachectin: more than a tumor necrosis factor. The New England Journal of Medicine 316(7): 379-385.
Beutler B, Milsark IW, Cerami AC (1985). Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229(4716): 869-871.
Blackwell TS, Christman JW (1996). Sepsis and cytokines: current status. British Journal of Anaesthesia 77(1): 110-117.
Bone RC, Sprung CL, Sibbald WJ (1992). Definitions for sepsis and organ failure. Critical Care Medicine 20(6): 724-726.
Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, Suter PM (1996). Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine 24(3): 392-397.
Bruemmer-Smith S, Stuber F, Schroeder S (2001). Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intensive Care Medicine 27(12): 1835-1841.
Bulger EM, Garcia I, Maier RV (2003). Induction of heme-oxygenase 1 inhibits endothelial cell activation by endotoxin and oxidant stress. Surgery 134(2): 146-152.
Castro MM, Cena J, Cho WJ, Walsh MP, Schulz R (2012). Matrix metalloproteinase-2 proteolysis of calponin-1 contributes to vascular hypocontractility in endotoxemic rats. Arteriosclerosis, Thrombosis, and Vascular Biology 32(3): 662-668.
Cauwels A (2007). Nitric oxide in shock. Kidney Int 72(5): 557-565.
Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, Venema RC, Catravas JD (2007). Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. American Journal of Respiratory and Critical Care Medicine 176(7): 667-675.
Chatterjee A, Snead C, Yetik-Anacak G, Antonova G, Zeng J, Catravas JD (2008). Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. American Journal of Physiology: Lung Cellular and Molecular Physiology 294(4): L755-763.
Chen SY, Hsiao G, Hwang HR, Cheng PY, Lee YM (2006). Tetramethylpyrazine induces heme oxygenase-1 expression and attenuates myocardial ischemia/reperfusion injury in rats. Journal of Biomedical Science 13(5): 731-740.
Cheng PY, Lee YM, Wu YS, Chang TW, Jin JS, Yen MH (2007). Protective effect of baicalein against endotoxic shock in rats in vivo and in vitro. Biochemical Pharmacology 73(6): 793-804.
Cheng YC, Chen LM, Chang MH, Chen WK, Tsai FJ, Tsai CH, Lai TY, Kuo WW, Huang CY, Liu CJ (2009). Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells. Molecular and Cellular Biochemistry 325(1-2): 15-23.
Choda Y, Morimoto Y, Miyaso H, Shinoura S, Saito S, Yagi T, Iwagaki H, Tanaka N (2004). Failure of the gut barrier system enhances liver injury in rats: protection of hepatocytes by gut-derived hepatocyte growth factor. European Journal of Gastroenterology & Hepatology 16(10): 1017-1025.
Chu C, He W, Kuang Y, Ren K, Gou X (2014). Celastrol protects kidney against ischemia-reperfusion-induced injury in rats. The Journal of Surgical Research 186(1): 398-407.
Cohen J (2002). The immunopathogenesis of sepsis. Nature 420(6917): 885-891.
Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P (1989). Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Critical Care Medicine 17(10): 975-978.
Der Sarkissian S, Cailhier JF, Borie M, Stevens LM, Gaboury L, Mansour S, Hamet P, Noiseux N (2014). Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1. British Journal of Pharmacology 171(23): 5265-5279.
Ding QH, Cheng Y, Chen WP, Zhong HM, Wang XH (2013). Celastrol, an inhibitor of heat shock protein 90beta potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes. European Journal of Pharmacology 708(1-3): 1-7.
Elia G, Santoro MG (1994). Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells. The Biochemical Journal 300 (Pt 1): 201-209.
Esmon CT (2005). The interactions between inflammation and coagulation. British Journal of Haematology 131(4): 417-430.
Feder ME, Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61: 243-282.
Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996). Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. Journal of Biological Chemistry 271(30): 17724-17732.
Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2): 1121-1131.
Fortin CF, McDonald PP, Fulop T, Lesur O (2010). Sepsis, leukocytes, and nitric oxide (NO): an intricate affair. Shock 33(4): 344-352.
Fountain JA, Parks ME, Dickey A, McKee RW (1970). Lactate dehydrogenase isoenzymes in tissues of normal and Ehrlich-Lettre ascites tumor-bearing Swiss mice. Cancer Research 30(4): 998-1002.
Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, Marey A, Lestavel P (1992). Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 101(3): 816-823.
Francis SP, Kramarenko, II, Brandon CS, Lee FS, Baker TG, Cunningham LL (2011). Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death & Disease 2: e195.
Fujishima Y, Yokota K, Sukamoto T (1998). The effect of danaparoid sodium (danaparoid) on endotoxin-induced experimental disseminated intravascular coagulation (DIC) in rats. Thrombosis Research 91(5): 221-227.
Glaze ER, Lambert AL, Smith AC, Page JG, Johnson WD, McCormick DL, Brown AP, Levine BS, Covey JM, Egorin MJ, Eiseman JL, Holleran JL, Sausville EA, Tomaszewski JE (2005). Preclinical toxicity of a geldanamycin analog, 17-(dimethylaminoethylamino)-17 -demethoxygeldanamycin (17-DMAG), in rats and dogs: potential clinical relevance. Cancer Chemotherapy and Pharmacology 56(6): 637-647.
Goloudina AR, Demidov ON, Garrido C (2012). Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Letters 325(2): 117-124.
Goode HF, Webster NR (1993). Free radicals and antioxidants in sepsis. Critical Care Medicine 21(11): 1770-1776.
Gorska M, Popowska U, Sielicka-Dudzin A, Kuban-Jankowska A, Sawczuk W, Knap N, Cicero G, Wozniak F (2012). Geldanamycin and its derivatives as Hsp90 inhibitors. Frontiers in Bioscience 17: 2269-2277.
Gregory SA, Morrissey JH, Edgington TS (1989). Regulation of tissue factor gene expression in the monocyte procoagulant response to endotoxin. Molecular and Cellular Biology 9(6): 2752-2755.
Gu L, Bai W, Li S, Zhang Y, Han Y, Gu Y, Meng G, Xie L, Wang J, Xiao Y, Shan L, Zhou S, Wei L, Ferro A, Ji Y (2013). Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress. PloS One 8(6): e65477.
Guzik TJ, Korbut R, Adamek-Guzik T (2003). Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiology and Pharmacology 54(4): 469-487.
Hardaway RM, Williams CH, Vasquez Y (2001). Disseminated intravascular coagulation in sepsis. Seminars in Thrombosis and Hemostasis 27(6): 577-583.
Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ (2008). Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. American journal of physiology. Renal Physiology 295(2): F397-405.
Heard SO, Perkins MW, Fink MP (1992). Tumor necrosis factor-alpha causes myocardial depression in guinea pigs. Critical Care Medicine 20(4): 523-527.
Herzum I, Renz H (2008). Inflammatory markers in SIRS, sepsis and septic shock. Current Medicinal Chemistry 15(6): 581-587.
Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH, Sausville EA (2005). In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemotherapy and Pharmacology 56(2): 115-125.
Horn KD (1998). Evolving strategies in the treatment of sepsis and systemic inflammatory response syndrome (SIRS). Quarterly Journal of Medicine: Monthly Journal of the Association of Physicians 91(4): 265-277.
Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K (1990). Flavonoids inhibit the expression of heat shock proteins. Cell Structure and Function 15(6): 393-401.
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 84(24): 9265-9269.
Ito T, Asai F, Oshima T, Kobayashi S (1990). Role of activated platelets in endotoxin-induced DIC in rats. Thrombosis Research 59(4): 735-747.
Ivy PS, Schoenfeldt M (2004). Clinical trials referral resource. Current clinical trials of 17-AG and 17-DMAG. Oncology 18(5): 610, 615, 619-620.
Jansen T, Daiber A (2012). Direct Antioxidant Properties of Bilirubin and Biliverdin. Is there a Role for Biliverdin Reductase? Frontiers in Pharmacology 3: 30.
Jing L, Wu Q, Wang F (2007). Glutamine induces heat-shock protein and protects against Escherichia coli lipopolysaccharide-induced vascular hyporeactivity in rats. Critical Care 11(2): R34.
Jung HW, Chung YS, Kim YS, Park YK (2007). Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Experimental & Molecular Medicine 39(6): 715-721.
Kang SW, Kim MS, Kim HS, Kim Y, Shin D, Park JH, Kang YH (2013). Celastrol attenuates adipokine resistin-associated matrix interaction and migration of vascular smooth muscle cells. Journal of Cellular Biochemistry 114(2): 398-408.
Kannaiyan R, Shanmugam MK, Sethi G (2011). Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Letters 303(1): 9-20.
Kaur G, Belotti D, Burger AM, Fisher-Nielson K, Borsotti P, Riccardi E, Thillainathan J, Hollingshead M, Sausville EA, Giavazzi R. (2004). Antiangiogenic properties of 17-(dimethylaminoethylamino) -17 -demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 10(14): 4813-4821.
Kiang JG, Agravante NG, Smith JT, Bowman PD (2011). 17-DMAG diminishes hemorrhage-induced small intestine injury by elevating Bcl-2 protein and inhibiting iNOS pathway, TNF-alpha increase, and caspase-3 activation. Cell & Bioscience 1(1): 21.
Kiang JG, Smith JT, Agravante NG (2009). Geldanamycin analog 17-DMAG inhibits iNOS and caspases in gamma-irradiated human T cells. Radiation Research 172(3): 321-330.
Kim DH, Shin EK, Kim YH, Lee BW, Jun JG, Park JH, Kim JK (2009). Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. European Journal of Clinical Investigation 39(9): 819-827.
Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AM (2005). Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. Journal of Immunology 175(4): 2622-2629.
Kim JE, Lee MH, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Cha JJ, Hyun YY, Han SY, Han KH, Han JY, Cha DR (2013). Celastrol, an NF-kappaB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PloS One 8(4): e62068.
Kim YS, Jung MH, Choi MY, Kim YH, Sheverdin V, Kim JH, Ha HJ, Park DJ, Kang SS, Cho GJ, Choi WS, Chang SH (2009). Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Critical Care Medicine 37(6): 2033-2044.
Komalavilas P, Lincoln TM (1996). Phosphorylation of the inositol 1, 4, 5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. Journal of Biological Chemistry 271(36): 21933-21938.
Kung CW, Lee YM, Cheng PY, Peng YJ, Yen MH (2011). Ethyl pyruvate reduces acute lung injury via regulation of iNOS and HO-1 expression in endotoxemic rats. The Journal of Surgical Research 167(2): e323-331.
Kung CW, Lee YM, Yen MH (2011). In vivo anticoagulant effect of ethyl pyruvate in endotoxemic rats. Thrombosis Research 127(6): 582-588.
Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen'ev MB (2006). Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress & Chaperones 11(3): 276-286.
Lam KK, Cheng PY, Lee YM, Liu YP, Ding C, Liu WH, Yen MH (2013). The role of heat shock protein 70 in the protective effect of YC-1 on heat stroke rats. European Journal of Pharmacology 699(1-3): 67-73.
Lau SS, Griffin TM, Mestril R (2000). Protection against endotoxemia by HSP70 in rodent cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology 278(5): H1439-1445.
Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, Hong YS, Lee JJ (2006). Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochemical Pharmacology 72(10): 1311-1321.
Lee YM, Cheng PY, Chim LS, Kung CW, Ka SM, Chung MT, Sheu JR (2011). Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses. Journal of Ethnopharmacology 135(1): 179-185.
Levi M (2007). Disseminated intravascular coagulation. Critical Care Medicine 35(9): 2191-2195.
Levi M (2005). Disseminated intravascular coagulation: What's new? Critical Care Clinics 21(3): 449-467.
Levi M (2001). Pathogenesis and treatment of disseminated intravascular coagulation in the septic patient. Journal of Critical Care 16(4): 167-177.
Levi M (2005). Settling the score for disseminated intravascular coagulation. Critical Care Medicine 33(10): 2417-2418.
Levi M, de Jonge E, van der Poll T (2003). Sepsis and disseminated intravascular coagulation. Journal of Thrombosis and Thrombolysis 16(1-2): 43-47.
Levi M, Dorffler-Melly J, Reitsma P, Buller H, Florquin S, van der Poll T, Carmeliet P (2003). Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. Blood 101(12): 4823-4827.
Levi M, Ten Cate H (1999). Disseminated intravascular coagulation. The New England Journal of Medicine 341(8): 586-592.
Levi M, ten Cate H, van der Poll T, van Deventer SJ (1993). Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA 270(8): 975-979.
Li G, Liu D, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, Hisamitsu T, Liu Y (2013). Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-κB-mediated matrix metalloproteinase-9 expression. PLoS One 8(7):e68905
Liu SF, Adcock IM, Old RW, Barnes PJ, Evans TW (1996). Differential regulation of the constitutive and inducible nitric oxide synthase mRNA by lipopolysaccharide treatment in vivo in the rat. Critical Care Medicine 24(7): 1219-1225.
Llesuy SF, Tomaro ML (1994). Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochimica et Biophysica Acta 1223(1): 9-14.
Lowenstein CJ, Dinerman JL, Snyder SH (1994). Nitric oxide: a physiologic messenger. Annals of Internal Medicine 120(3): 227-237.
Luo S, Wang T, Qin H, Lei H, Xia Y (2011). Obligatory role of heat shock protein 90 in iNOS induction. American Journal of Physiology: Cell Physiology 301(1): C227-233.
Madrigal-Matute J, Fernandez-Garcia CE, Gomez-Guerrero C, Lopez-Franco O, Munoz-Garcia B, Egido J, Blanco-Colio LM, Martin-Ventura JL (2012). HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovascular Research 95(1): 116-123.
Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM, Munoz-Garcia B, Ramos-Mozo P, Ortega L, Egido J, Martín-Ventura JL (2010). Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovascular Research 86(2): 330-337.
Mayer MP, Bukau B (2005). Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62(6): 670-684.
McConnell KW, Fox AC, Clark AT, Chang NY, Dominguez JA, Farris AB, Buchman TG, Hunt CR, Coopersmith CM (2011). The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. Journal of Immunology 186(6): 3718-3725.
Merx MW, Weber C (2007). Sepsis and the heart. Circulation 116(7): 793-802.
Moncada S, Higgs EA (1987). Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Reviews 1(2): 141-145.
Moncada S, Palmer RM, Higgs EA (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews 43(2): 109-142.
Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N, Christman JW, Foiles N, Kamp DW, Ghio AJ, Chandel NS, Dean DA, Sznajder JI, Budinger GR. (2007). Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. The Journal of Clinical Investigation 117(10): 2952-2961.
Nathan CF (1987). Secretory products of macrophages. The Journal of Clinical Investigation 79(2): 319-326.
Neviere R, Fauvel H, Chopin C, Formstecher P, Marchetti P (2001). Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163(1): 218-225.
Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998). In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. The Journal of Cell Biology 143(4): 901-910.
Okajima K (2000). [SIRS and the coagulation of normality]. Rinsho byori. The Japanese Journal of Clinical Pathology 48(6): 510-515.
Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988). Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. The Journal of Clinical Investigation 81(4): 1162-1172.
Opal SM (2003). Interactions between coagulation and inflammation. Scandinavian Journal of Infectious Diseases 35(9): 545-554.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6(4): 422-428.
Paimela T, Hyttinen JM, Viiri J, Ryhanen T, Karjalainen RO, Salminen A, Kaarniranta K. (2011). Celastrol regulates innate immunity response via NF-kappaB and Hsp70 in human retinal pigment epithelial cells. Pharmacological Research 64(5): 501-508.
Palmer RM, Rees DD, Ashton DS, Moncada S (1988). L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochemical and Biophysical Research Communications 153(3): 1251-1256.
Phillips RA (2003). The relationship between proinflammatory mediators and heat stress induced rhabdomyolysis in exercising marines. Critical Care Nursing Clinics of North America 15(2): 163-170, vii.
Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K (2015). Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences 72(3): 557-581.
Pratt WB (1997). The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annual Review of Pharmacology and Toxicology 37: 297-326.
Preiser JC, Zhang H, Wachel D, Boeynaems JM, Buurman W, Vincent JL (1994). Is endotoxin-induced hypotension related to nitric oxide formation? European surgical research. Europaische chirurgische Forschung. Recherches Chirurgicales Europeennes 26(1): 10-18.
Qi J, Han X, Liu HT, Chen T, Zhang JL, Yang P, Bo SH, Lu XT, Zhang J (2014). 17-Dimethylaminoethylamino-17-demethoxygeldanamycin attenuates inflammatory responses in experimental stroke. Biological & Pharmaceutical Bulletin 37(11): 1713-1718.
Qu Z, Dong H, Xu X, Feng W, Yi X (2013). Combined effects of 17-DMAG and TNF on cells through a mechanism related to the NF-kappaB pathway. Diagnostic Pathology 8: 70.
Raetz CR (1990). Biochemistry of endotoxins. Annual Review of Biochemistry 59: 129-170.
Remick DG, Call DR, Ebong SJ, Newcomb DE, Nybom P, Nemzek JA, Bolgos GE. (2001). Combination immunotherapy with soluble tumor necrosis factor receptors plus interleukin 1 receptor antagonist decreases sepsis mortality. Critical Care Medicine 29(3): 473-481.
Rietschel ET, Brade H (1992). Bacterial endotoxins. Scientific American 267(2): 54-61.
Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. Journal of Medicinal Chemistry 42(2): 260-266.
Russell JA (2006). Management of sepsis. The New England Journal of Medicine 355(16): 1699-1713.
Ryter SW, Alam J, Choi AM (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 86(2): 583-650.
Schulte W, Bernhagen J, Bucala R (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators of Inflammation 2013: 165974.
Seo WY, Goh AR, Ju SM, Song HY, Kwon DJ, Jun JG, Kim BC, Choi SY, Park J (2011). Celastrol induces expression of heme oxygenase-1 through ROS/Nrf2/ARE signaling in the HaCaT cells. Biochemical and Biophysical Research Communications 407(3): 35-540.
Seo WY, Ju SM, Song HY, Goh AR, Jun JG, Kang YH, Choi SY, Park J (2010). Celastrol suppresses IFN-gamma-induced ICAM-1 expression and subsequent monocyte adhesiveness via the induction of heme oxygenase-1 in the HaCaT cells. Biochemical and Biophysical Research Communications 398(1): 140-145.
Shen HH, Lam KK, Cheng PY, Kung CW, Chen SY, Lin PC, Chung MT, Lee YM. (2014). Alpha-lipoic Acid Prevents Endotoxic Shock and Multiple Organ Dysfunction Syndrome Induced by Endotoxemia in Rats. Shock 43(4):405-411.
Shih CC, Chen SJ, Chen A, Wu JY, Liaw WJ, Wu CC (2008). Therapeutic effects of hypertonic saline on peritonitis-induced septic shock with multiple organ dysfunction syndrome in rats. Critical Care Medicine 36(6): 1864-1872.
Shimp SK, 3rd, Parson CD, Regna NL, Thomas AN, Chafin CB, Reilly CM, Nichole Rylander M (2012). HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-kappaB pathways. Inflammation Research 61(5): 521-533.
Singleton KD, Serkova N, Banerjee A, Meng X, Gamboni-Robertson F, Wischmeyer PE (2005). Glutamine attenuates endotoxin-induced lung metabolic dysfunction: potential role of enhanced heat shock protein 70. Nutrition 21(2): 214-223.
Smith A, Alam J, Escriba PV, Morgan WT (1993). Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. Journal of Biological Chemistry 268(10): 7365-7371.
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235(4792): 1043-1046.
Stouthard JM, Levi M, Hack CE, Veenhof CH, Romijn HA, Sauerwein HP, van der Poll T (1996). Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thrombosis and Haemostasis 76(5): 738-742.
Szabo C, Wu CC, Mitchell JA, Gross SS, Thiemermann C, Vane JR (1993). Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Circulation Research 73(6): 991-999.
Takaki S, Takeyama N, Kajita Y, Yabuki T, Noguchi H, Miki Y, Inoue Y, Nakagawa T, Noguchi H (2010). Beneficial effects of the heme oxygenase-1/carbon monoxide system in patients with severe sepsis/septic shock. Intensive Care Medicine 36(1): 42-48.
Thiemermann C, Vane J (1990). Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. European Journal of Pharmacology 182(3): 591-595.
Thiemermann C, Wu CC, Szabo C, Perretti M, Vane JR (1993). Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. British Journal of Pharmacology 110(1): 177-182.
Tomanek L (2002). The Heat-Shock Response: Its Variation, Regulation and Ecological Importance in Intertidal Gastropods (genus Tegula). Integrative and Comparative Biology 42(4): 797-807.
Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nature reviews. Cancer 10(8): 537-549.
Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology 2(12): a004390.
van der Poll T, de Jonge E, Levi M (2001). Regulatory role of cytokines in disseminated intravascular coagulation. Seminars in Thrombosis and Hemostasis 27(6): 639-651.
van der Poll T, Levi M, Hack CE, ten Cate H, van Deventer SJ, Eerenberg AJ, de Groot ER, Jansen J, Gallati H, Büller HR (1994). Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. The Journal of Experimental Medicine 179(4): 1253-1259.
van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990). Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76(12): 2520-2526.
Venkatesha SH, Astry B, Nanjundaiah SM, Yu H, Moudgil KD (2012). Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorganic & Medicinal Chemistry 20(17): 5229-5234.
Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A, Antonova O, Evgen'ev M (2012). Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress & Chaperones 17(1): 89-101.
Wang RE, Kao JL, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, Taylor JS (2009). Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. Journal of Medicinal Chemistry 52(7): 1912-1921.
Wang YL, Lam KK, Cheng PY, Kung CW, Chen SY, Chao CC, Hwang HR, Chung MT, Lee YM (2013). The cardioprotective effect of hypertonic saline is associated with inhibitory effect on macrophage migration inhibitory factor in sepsis. BioMed Research International 2013: 201614.
Wang YL, Lam KK, Cheng PY, Lee YM (2015). Celastrol prevents circulatory failure via induction of heme oxygenase-1 and heat shock protein 70 in endotoxemic rats. Journal of Ethnopharmacology 162: 168-175.
Ward PA (2008). Role of the complement in experimental sepsis. Journal of Leukocyte Biology 83(3): 467-470.
Ware LB, Matthay MA (2000). The acute respiratory distress syndrome. The New England Journal of Medicine 342(18): 1334-1349.
Whitesell L, Cook P (1996). Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Molecular Endocrinology 10(6): 705-712.
Wichterman KA, Baue AE, Chaudry IH (1980). Sepsis and septic shock--a review of laboratory models and a proposal. The Journal of Surgical Research 29(2): 189-201.
Yu MK, Lee JC, Kim JH, Lee YH, Jeon JG, Jhee EC, Yi HK (2009). Anti-inflammatory effect of peroxisome proliferator activated receptor gamma on human dental pulp cells. Journal of Endodontics 35(4): 524-528.
Yu X, Tao W, Jiang F, Li C, Lin J, Liu C (2010). Celastrol attenuates hypertension-induced inflammation and oxidative stress in vascular smooth muscle cells via induction of heme oxygenase-1. American Journal of Hypertension 23(8): 895-903.
Zhang HM, Dang H, Kamat A, Yeh CK, Zhang BX (2012). Geldanamycin derivative ameliorates high fat diet-induced renal failure in diabetes. PloS One 7(3): e32746.
Zhang J, Li CY, Xu MJ, Wu T, Chu JH, Liu SJ, Ju WZ (2012). Oral bioavailability and gender-related pharmacokinetics of celastrol following administration of pure celastrol and its related tablets in rats. Journal of Ethnopharmacology 144(1): 195-200.
Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG, Sun D (2008). A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Molecular Cancer Therapeutics 7(1): 162-170.
Zhang T, Li Y, Yu Y, Zou P, Jiang Y, Sun D (2009). Characterization of celastrol to inhibit hsp90 and cdc37 interaction. Journal of Biological Chemistry 284(51): 35381-35389.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top