跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳儀蓁
研究生(外文):Yi-Chen Wu
論文名稱:CYP及P-gp型藥物交互作用於前臨床試驗期及臨床試驗期之預測率探討
論文名稱(外文):Preclinical to Clinical Prediction of CYP and P-gp-mediated Drug-Drug Interactions
指導教授:胡德民胡德民引用關係
指導教授(外文):Teh-Min Hu
口試委員:鮑力恆張豫立
口試委員(外文):Li-Heng PaoYuh-Lih Chang
口試日期:2015-05-26
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:126
中文關鍵詞:藥物交互作用抑制劑CYPP-gp前臨床試驗
外文關鍵詞:Drug drug interactioninhibitorCYPP-gppreclinical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:643
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
嚴重的藥物交互作用 (DDI) 會危害病人並導致藥品下市,因此新藥的研發會於臨床前試驗期 (preclinical stage),藉由預測模式 (prediction models) 來增進對藥品的了解,協助臨床試驗的決策以降低進入後可能造成的風險與成本。在臨床前試驗期,會以動物實驗或體外試驗 (in vitro tests) 來探討可能產生DDI的情形。動物實驗提供新藥在進入人體試驗前初步的藥動學資訊,然而不同生物體之間存在代謝上的差異,動物之藥動學交互作用數據 (如AUC ratio,藥品併用與單獨使用下AUC比) 是否與人體之數據具關聯性尚無明確的論斷。體外DDI試驗主要於分離之細胞或酵素系統進行代謝抑制實驗 (metabolic inhibition studies),酵素抑制劑參數如IC50或Ki值常用來定量預測體內的AUC ratio (AUCR) ,以判斷發生DDI的可能性。以P-gp為例,FDA建議以假定腸道濃度 (hypothetical intestinal concentration) 與IC50的比值來預測體內AUCR,然而在過去許多研究中,研究人員對於切點 (cutoff point) 的適合度及各項預測率的準確度提出了許多的想法與質疑,至今仍未能得到最適合的結論。
因此,本研究針對兩個研究問題進行研究,首先探討以藥物強度因子 (drug intensity factor, DIF = Dose/IC50) 是否能提升P-gp型交互作用體外預測體內之預測率,由PubMed資料庫收集交互作用配對藥品之AUC資料,並以receiver operating characteristic (ROC) curve進一步探討DIF切點。此外,也以數據探勘的方式蒐集動物與人體在藥品併用與未併用CYP抑制劑下的AUC數據,探討動物與人體DDI數據間之相關性。
研究結果共取得126組AUCR數據,經進一步處理後共91組AUCR進行分析。共29組配對,由28個受質及36個抑制劑組成。FDA指標與DIF切點分別為45及5,DIF顯示能比FDA建議指標有更高的整體預測率(82%與74%)與專一度,與過去研究之切點相比,也顯示DIF能夠好的整體預測率及專一度,並且有較強的概似比(4.47),顯示DIF能夠有更精準預測P-gp抑制劑的情形。CYP型交互作用之動物與人類體內數據共取得54個AUCR,22組配對,6種動物及5種CYP亞型。結果顯示兩者的相關性低,而小鼠有低估的情形,猴子有高估的情形。
提高前臨床試驗與臨床試驗期的DDI預測,能夠降低臨床試驗的風險及藥品開發時的成本消耗,DIF能夠提供好的整體預測率及專一度,能夠協助P-gp型交互作用抑制劑的預測,而動物與人體之研究由於數據的缺乏,無法有確定的結論,更多動物與人類的差異性可能還需了解。

Severe drug-drug interactions (DDI) endanger patient’s health and may cause market withdrawal of drugs. Therefore, in the preclinical stage, DDI prediction becomes crucial, because it helps the decision-making process to ensure the reduction of the risks and costs that may possibly occur in clinical phases. In vitro tests and in vivo animal studies are commonly used to explore the potential of DDI in the preclinical stage. Animal studies provide preliminary pharmacokinetic information of new drugs before entering human trials. However, given the differences in metabolic systems between species, it is not clear whether DDI studies in animals are relevant to human. Currently, the DDI potential of a new molecular entity is generally determined on the basis of in-vitro enzyme-inhibition studies. Parameters derived from in vitro studies, such as IC50 or Ki values, were used to predict possible DDI occurrence and exclude severe DDI drug pairs from entering human clinical trial. For P-gp, the US FDA recommends the use of a hypothetical intestinal concentration and IC50 to predict the AUC ratio in the context of drug coadministration; however, the method has not been validated and there is no consensus about the appropriate cutoff value.
In this research of Chapter 2, a drug intensity factor (DIF) is described for predicting the potential of P-gp-mediated DDI. The DIF parameter, defined as inhibitor dose/IC50, can be realized as a quantitative measure of the potential of a p-gp inhibitor at a given dose to cause DDI. We tried to evaluate if DIF can predict potential P-gp-mediated DDI. In Chapter 3, the aim was to examine the research question as to how DDI information obtained from animal studies correlates with the acutal DDI in human. Based on the available database for CYP-mediated DDI, the correlation of animal and human AUC data were analyzed.
Comprehensive literature search for AUC data in the context of DDI studies has been conducted using PubMed to investigate the two researches. The AUC ratio (AUCR) was colleted or calculated as the ratio of AUC with substrate/inhibitor coadministration to AUC without coadministration. Receiver operating characteristic (ROC) analysis has been performed for the determination of the DIF cutoff point.
The result of chaper 2 shows that DIF is a better predictor of clinical p-gp-mediated DDI with higher overall prediction performance (82% and 74%), comparing with the FDA-suggested index. However, in chapter 3, only limited data can be obtained of animal data, which account for only 22 drug pairs. We also observe that animal DDI information seems may result in either over- or under- estimation of human DDI, depending on the species studied (e.g. monkey vs. rat).
The imporvement of prediction of DDI is crutial to understand the safety of medication. DIF can provide better overall accurancy that might asist the prediction of P-gp-mediated inhibitor. Although a quantitiative relationship between animal and human data cannot be estabished, it is pinpointted that the further evaluation of similarities of human and animal are warranted.

第一章 緒論
第一節 新藥開發過程與藥物交互作用預測概念
壹、 藥品交互作用在臨床及藥品市場之影響
貳、 前臨床試驗的目的
參、 美國藥品食品檢驗局(FDA)對藥品交互作用之論點
肆、 藥廠/臨床對藥品交互作用之論點
第二節 藥品交互作用的類型
壹、 代謝型藥品交互作用
貳、 轉運蛋白型藥品交互作用
參、 多種型藥品交互作用
第三節 藥品交互作用之預測方法
壹、 體外預測體內
貳、 藥物交互作用預測的標準
第四節 體外試驗
壹、 體外試驗目的
貳、 體外實驗方法
參、 過去P-gp體外預測體內實驗回顧與爭議
肆、 小結
第五節 動物實驗
壹、 動物實驗的目的
貳、 物種之間的差距
第六節 討論
第二章 藥物交互作用預測:以體外預測體內
第一節 藥物強度因子(drug intensive factor, DIF)概念
第二節 研究目的
第三節 研究方法
第四節 研究結果
一、 前導研究結果
二、 數據探勘研究結果
三、 與FDA標準比較
四、 同樣AUCR標準,各ROC間的比較
五、 不同AUCR標準下,各ROC預測結果
六、 各抑制劑間差異
七、 各受質間差異
八、 依藥理分類分析
第五節 討論
第三章 藥品交互作用預測:以體內預測體內
第一節 前言與研究目的
第二節 研究方法
第三節 研究結果
一、 結果
二、 物種之間的差異
第四節 討論
第四章 結論
第一節 體外預測體內-P-gp型交互作用
第二節 體內預測體內:CYP型交互作用
第三節 總結與建議
第五章 參考資料

1.Karen Rowland Yeo, M.J., Amin Rostami Hodjegan, Predicting drug–drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach. Clin. Pharmacol., 2013. 6(2): p. 143-157.
2.Strandell, J., O. Caster, J. Hopstadius, et al., The development and evaluation of triage algorithms for early discovery of adverse drug interactions. Drug Saf, 2013. 36(5): p. 371-88.
3.Prueksaritanont, T., X. Chu, C. Gibson, et al., Drug-drug interaction studies: regulatory guidance and an industry perspective. AAPS J, 2013. 15(3): p. 629-45.
4.FDA, Guidance for Industry:Drug Interaction Studies--Study Design, Data Analysis, and Implications for Dosing and Labeling. Draft guidance. 2012.
5.Loyd V Allen P, Nicholas G Ansel, and H. C, Ansels pharmaceutical Dosage Form and Drug Delivery Systems. 10th Edition. 2014.
6.衛生福利部食品藥物管理署, 藥品非臨床試驗安全性規範 第五版. 103年.
7.Zhang, L., Y.D. Zhang, P. Zhao, et al., Predicting drug-drug interactions: an FDA perspective. AAPS J, 2009. 11(2): p. 300-6.
8.Paul, S.M., D.S. Mytelka, C.T. Dunwiddie, et al., How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 2010. 9(3): p. 203-14.
9.Gu QD, B.V., Prescription drug use continues to increase: U.S. prescription drug data for 2007–2008. NCHS Data Briefs, 2010. 42: p. 1-8.
10.Paterno, M.D., S.M. Maviglia, P.N. Gorman, et al., Tiering drug-drug interaction alerts by severity increases compliance rates. J Am Med Inform Assoc, 2009. 16(1): p. 40-6.
11.Marcella Martignoni, Geny MM Groothuis, and R.d. Kanter, Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Drug Metab. Toxicol. , 2006. 2(6).
12.Sakai C, Iwano S, Yamazaki Y, et al., Species Differences in the Pharmacokinetic Parameters of CytochromeP450 Probe Substrates between Experimental Animals, such as Mice,Rats, Dogs, Monkeys, and Microminipigs, and Humans. J Drug Metab Toxicol, 2014. 5(3).
13.R Harpaz, W.D., N H Shah4, D Madigan, P Ryan, C Friedman, Novel Data-Mining Methodologies for Adverse Drug Event Discovery and Analysis. Clin Pharmacol Ther, 2012. 91(6): p. 1010-1021.
14.Sutherland, J.J., T.M. Daly, X. Liu, et al., Co-prescription trends in a large cohort of subjects predict substantial drug-drug interactions. PLoS One, 2015. 10(3): p. e0118991.
15.Zhang, L., Y.D. Zhang, J.M. Strong, et al., A regulatory viewpoint on transporter-based drug interactions. Xenobiotica, 2008. 38(7-8): p. 709-24.
16.Hager WD, F.P., Mayersohn M, Perrier D, Graves P, Marcus FI, Goldman S., Digoxin–quinidine interaction. Pharmacokinetic evaluation. N Engl J Med, 1979. 300(22): p. 1238-1241.
17.Fromm MF, Kim RB, Stein CM, et al., Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine. Circulation, 1999. 99(4): p. 552-557.
18.Cvetkovic M, L.B., Fromm MF, Wilkinson GR, Kim RB., OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos., 1999. 27(8): p. 866-871.
19.Simonson SG, R.A., Martin PD, Mitchell PD, Jarcho JA, Brown CD, Windass AS, Schneck DW., Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther, 2004. 76(2): p. 167-177.
20.Thorir D. Bjornsson, John T. Callaghan, Heidi J. Einolf, et al., The conduct of in vitro and in vivo drug-drug interaction studies: a pharmaceutical research and manufacturers of america(PhRMA) perspective. Drug Metab Dispos, 2003. 31(7): p. 815-832.
21.Ito K, I.T., Kanamitsu S, Nakajima Y, Sugiyama Y, Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annual Review of Pharmacology and Toxicology, 1998. 38: p. 461-99.
22.Lin JH, C.M., Baillie TA., Is the role of the small intestine in first-pass metabolism overemphasized? . Pharmacol Rev., 1999. 51(2): p. 135-58.
23.Claudia J. Bode, Hong Jin, Erik Rytting, et al., In Vitro Models for Studying Trophoblast Transcellular Transport. Methods Mol Med., 2006. 122: p. 225-239.
24.Shinya It, Cindy Woodland, Bala'zs Sarkadi, et al., Modeling of P-glycoprotein-involved epithelial drug transport in MDCK cells. American Physiological Society, 1999. 277: p. F84-F96.
25.Feng, B., J.B. Mills, R.E. Davidson, et al., In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos, 2008. 36(2): p. 268-75.
26.Brouwer, K.L., D. Keppler, K.A. Hoffmaster, et al., In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther, 2013. 94(1): p. 95-112.
27.Bentz, J., M.P. O'Connor, D. Bednarczyk, et al., Variability in P-glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos, 2013. 41(7): p. 1347-66.
28.Fenner, K.S., M.D. Troutman, S. Kempshall, et al., Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther, 2009. 85(2): p. 173-81.
29.Jack A. Cook, Bo Feng, Katherine S. Fenner, et al., Refining the In Vitro and In Vivo Critical Parameters for P-Glycoprotein, [I]/IC50 and [I2]/IC50, That Allow for the Exclusion of Drug Candidates from Clinical Digoxin Interaction Studies. Molecular pharmaceutics, 2009. 7(2): p. 398-411.
30.Ellens, H., S. Deng, S. Deng, et al., Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos, 2013. 41(7): p. 1367-74.
31.J C Stevens, L.A.S., J R Cashman, M Vandenbranden and S A Wrighton, Comparison of human and rhesus monkey in vitro phase I and phase II hepatic drug metabolism activities. Drug Metab Dispos, 1993. 21: p. 753-760.
32.J.J.P. Bogaards, M. Bertran, P. Jackson, et al., Determining the best animal model for humancytochrome P450 activities: a comparison of mouse,rat, rabbit, dog, micropig, monkey and man. Xenobiotica, 2000. 30(12): p. 1131-1152.
33.Tachibana, T., M.K. , J.T. , et al., Predicting Drug–Drug Interactions Involving the Inhibition of Intestinal CYP3A4 and P-Glycoprotein. Current Drug Metabolism, 2010. 11: p. 762-777.
34.Melchior, D.L., F.J. Sharom, R. Evers, et al., Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers. J Pharmacol Toxicol Methods, 2012. 65(2): p. 64-74.
35.Akamine, Y., N. Yasui-Furukori, I. Ieiri, et al., Psychotropic drug-drug interactions involving P-glycoprotein. CNS Drugs, 2012. 26(11): p. 959-73.
36.Tachibana, T., M. Kato, T. Watanabe, et al., Method for predicting the risk of drug-drug interactions involving inhibition of intestinal CYP3A4 and P-glycoprotein. Xenobiotica, 2009. 39(6): p. 430-43.
37.Jacobson, T.A., Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol, 2004. 94(9): p. 1140-6.
38.Lemahieu, W.P., M. Hermann, A. Asberg, et al., Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. Am J Transplant, 2005. 5(9): p. 2236-43.
39.Paul H. Siedlik, Stephen C. Olson, Bing-Bing Yang, et al., Erythromycin Coadministration Increases Plasma Atorvastatin Concentrations. J Clin Pharmacol, 1999. 39: p. 501-504.
40.Terkeltaub, R.A., D.E. Furst, J.L. Digiacinto, et al., Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors. Arthritis Rheum, 2011. 63(8): p. 2226-37.
41.Mendell, J., H. Zahir, N. Matsushima, et al., Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs, 2013. 13(5): p. 331-42.
42.Kiser, J.J., J.R. Burton, P.L. Anderson, et al., Review and management of drug interactions with boceprevir and telaprevir. Hepatology, 2012. 55(5): p. 1620-8.
43.Delavenne, X., E. Ollier, T. Basset, et al., A semi-mechanistic absorption model to evaluate drug-drug interaction with dabigatran: application with clarithromycin. Br J Clin Pharmacol, 2013. 76(1): p. 107-13.
44.Rebecca A Boyd, Ralph H Stern, Barbra H Stewart, et al., Atorvastatin Coadministration May Increase Digoxin Concentrations by Intestinal P-Glycoprotein-Mediated Secretion. J Clin Pharmacol, 2000. 40: p. 91-98.
45.C. De Mey, E. Brendel, and D. Enterling, Carvedilol increases the systemic bioavailability of oral digoxin. Br. J. clin. Pharmac., 1990. 29: p. 486-490.
46.Jens Rengelshausen, Christoph Göggelmann, Jürgen Burhenne, et al., Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin–clarithromycin interaction. Br J Clin Pharmacol, 2003. 56: p. 32-38.
47.Afaf A. Mahgoub, Azza H. El-Medany, and A.S. Abdulatif, A comparison between the effects of diltiazem and isosorbide dinitrate on digoxin pharmacodynamics and kinetics in the treatment of patients with chronic ischemic heart failure. Saudi Med J, 2002;. 23(6): p. 725-731.
48.Schwartz, J.I., N.G. Agrawal, M. Wehling, et al., Evaluation of the pharmacokinetics of digoxin in healthy subjects receiving etoricoxib. Br J Clin Pharmacol, 2008. 66(6): p. 811-7.
49.M. DE Smet, D. F. Schoors, G. DE Meyer, et al., Effect of multiple doses of losartan on the pharmacokinetics of single doses of digoxin in healthy volunteers. Br J Clin Pharmacol, 1995. 40: p. 571-575.
50.Martin Siepmann, C. Kleinbloesem, and W. Kirch, The interaction of the calcium antagonist RO 40-5967 with digoxin. Br J Clin Pharmacol, 1995. 39: p. 491-496.
51.Kirby, B., E.D. Kharasch, K.T. Thummel, et al., Simultaneous measurement of in vivo P-glycoprotein and cytochrome P450 3A activities. J Clin Pharmacol, 2006. 46(11): p. 1313-9.
52.Berend Oosterhuis, Jah H G Jonkman, Tommy Andersson, et al., Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol, 1991. 32: p. 569-572.
53.Yu, J.R., T. K. Mulgaonkar, and A. Ragueneau-Majlessi, Drug disposition and drug-drug interaction data in 2013 FDA new drug applications: a systematic review. Drug Metab Dispos, 2014. 42(12): p. 1991-2001.
54.Shoaf, S.E., Y. Ohzone, S. Ninomiya, et al., In vitro P-glycoprotein interactions and steady-state pharmacokinetic interactions between tolvaptan and digoxin in healthy subjects. J Clin Pharmacol, 2011. 51(5): p. 761-9.
55.Cho Ming Loi, Philip W Knowlton, Ralf Stern, et al., Effect of Troglitazone on steady-state pharmacokinetic of digoxin. J Clin Pharmacol, 1998. 38(178-183).
56.Watanabe, H., K. Kosuge, S. Nishio, et al., Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci, 2004. 76(3): p. 281-92.
57.Shimizu, M., T. Uno, K. Sugawara, et al., Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol, 2006. 61(5): p. 538-44.
58.Barbara Davit, Kellie Reynolds, Rae Yuan, et al., FDA Evaluations Using In Vitro Metabolism to Predict and Interpret In Vivo Metabolic Drug-Drug Interactions: Impact on Labeling. J Clin Pharmacol, 1999;. 39: p. 899-910.
59.Uno, T., M. Shimizu, K. Sugawara, et al., Lack of dose-dependent effects of itraconazole on the pharmacokinetic interaction with fexofenadine. Drug Metab Dispos, 2006. 34(11): p. 1875-9.
60.van Heeswijk, R.P., M. Bourbeau, P. Campbell, et al., Time-dependent interaction between lopinavir/ritonavir and fexofenadine. J Clin Pharmacol, 2006. 46(7): p. 758-67.
61.Lilja, J.J., M. Niemi, H. Fredrikson, et al., Effects of clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide. Br J Clin Pharmacol, 2007. 63(6): p. 732-40.
62.Hermann DJ, Krol TF, Dukes GE, et al., Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol, 1992. 32: p. 176-`83.
63.L. Gullestad, K.P. Nordal, K.J. Berg, et al., Interaction Between Lovastatin and Cyclosporine A After Heart and Kidney Transplantation. Transplantation Proceedings, 1999. 31: p. 2163-2165.
64.Carol W. Holtzman, Barbara S. Wiggins, and S.A. Spinler, Role of P-glycoprotein in Statin Drug Interactions. Pharmacotherapy 2006. 11: p. 1601-1607.
65.K. T. Kivisto, T. Kantola, and P.J. Neuvonen, Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol, 1998. 46: p. 49-53.
66.Evan D. Kharasch, Christine Hoffer, and D. Whittington, The effect of quinidine, used as a probe for the involvement of P-glycoprotein, on the intestinal absorption and pharmacodynamics of methadone. Br J Clin Pharmacol, 2003. 57(5): p. 600-610.
67.Jetske M. Meerum Terwogt, M.M. Malingre, W.W.t.B.H. Jos H. Beijnen, et al., Coadministration of Oral Cyclosporin A Enables Oral Therapy with Paclitaxel. Clinical Cancer Research, 1999. 5: p. 3379-3384.
68.Sony Tuteja, Rita R Alloway, Julie A Johnson, et al., The effect of gut metabolism on Tracrolimus bioavailability in renal transplant recipients. Transplantation, 2001. 71: p. 1303–1307.
69.Bernsdorf, A., T. Giessmann, C. Modess, et al., Simvastatin does not influence the intestinal P-glycoprotein and MPR2, and the disposition of talinolol after chronic medication in healthy subjects genotyped for the ABCB1, ABCC2 and SLCO1B1 polymorphisms. Br J Clin Pharmacol, 2006. 61(4): p. 440-50.
70.Martindale. Micromedex @ 2014.
71.Drugdex. Micromedex@ 2014.
72.Canadian Institutes of Health Research, Alberta Innovates - Health Solutions, and T.M.I.C. (TMIC), Drug bank verson 4.2 http://www.drugbank.ca/.
73.Medscape verson 4.5.1.
74.Dong, J., X. Yu, L. Wang, et al., Effects of cyclosporin A and itraconazole on the pharmacokinetics of atorvastatin in rats. Acta Pharmacol Sin, 2008. 29(10): p. 1247-52.
75.林佳璇, 利用線性迴歸模式預測CYP代謝途徑之藥物交互作用. 碩士論文.國防醫學院藥學系暨藥學研究所, 2011.
76.D.J. Freeman, D.R. Grant, and S.G. Carruthers, The cyclosporin-erythromycin interaction: impaired first pass metabolism in the pig. Br J Clin Pharmacol, 1991. 103: p. 1709-1712.
77.Masaaki Katayama, Hiroyuki Igarashi, Kenji Tani, et al., Effect of Multiple Oral Dosing of Fluconazole on the Pharmacokinetics of Cyclosporine in Healthy Beagles. J. Vet. Med. Sci., 2008. 70(1): p. 85-88.
78.Ito, K., H.S. Brown, and J.B. Houston, Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol, 2004. 57(4): p. 473-86.
79.Ogasawara, A., I. Negishi, K. Kozakai, et al., In vivo evaluation of drug-drug interaction via mechanism-based inhibition by macrolide antibiotics in cynomolgus monkeys. Drug Metab Dispos, 2009. 37(11): p. 2127-36.
80.Sayuri Takdomi, Hirotami Matsuo, Katsuhiro Yamano, et al., Quantitative prediction of the interaction of midazolam and histamine Hw receptor antagonists in rats. Drug Metab Dispos, 1997. 26(4): p. 318-323.
81.Uchida, S., S. Tanaka, and N. Namiki, Simultaneous and comprehensive in vivo analysis of cytochrome P450 activity by using a cocktail approach in rats. Biopharm Drug Dispos, 2014. 35(4): p. 228-36.
82.Isoherranen, N., J.D. Lutz, S.P. Chung, et al., Importance of multi-p450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude, and prediction from in vitro data. Chem Res Toxicol, 2012. 25(11): p. 2285-300.
83.Katsuhiro Yamano, Koujirou Yamamoto, Hajime Kotaki, et al., Quantitative prediction of metabolic inhibition of midazolam by itraconazole and ketoconazole in rat: implication of concentrative uptake of inhibitors into liver. Drug Metab Dispos, 1999. 27(3): p. 395-402.
84.Templeton, I., C.C. Peng, K.E. Thummel, et al., Accurate prediction of dose-dependent CYP3A4 inhibition by itraconazole and its metabolites from in vitro inhibition data. Clin Pharmacol Ther, 2010. 88(4): p. 499-505.
85.Sekiguchi, N., M. Kato, M. Takada, et al., In vivo approach for the evaluation of mechanism-based inhibition of cytochrome P450 3A in rats. Xenobiotica, 2008. 38(4): p. 368-81.
86.Grimsley, A., R. Gallagher, M. Hutchison, et al., Drug-drug interactions and metabolism in cytochrome P450 2C knockout mice: application to troleandomycin and midazolam. Biochem Pharmacol, 2013. 86(4): p. 529-38.
87.Hippalgaonkar, K., R. Srirangam, B. Avula, et al., Interaction between topically and systemically coadministered P-glycoprotein substrates/inhibitors: effect on vitreal kinetics. Drug Metab Dispos, 2010. 38(10): p. 1790-7.
88.Wang, J.S., C.L. DeVane, B.B. Gibson, et al., Population pharmacokinetic analysis of drug-drug interactions among risperidone, bupropion, and sertraline in CF1 mice. Psychopharmacology (Berl), 2006. 183(4): p. 490-9.
89.Edoardo Spina, Concetta D’Arrigo, Gaetana Migliardi, et al., Plasma Risperidone Concentrations During Combined Treatment with Sertraline. Ther Drug Monit, 2004. 26(4).
90.Peter F Smith, Ronald S Eydelloth, Scott J Grossman, et al., HMG-CoA Reductase Inhibitor-Induced Myopathy in the Rat: Cyclosporine A Interaction and Mechanism Studies. J Pharmacol Exp Ther, 1991. 257(3): p. 1224-1235.
91.Kenichiro Nakashima, Kazumi Yamamotoa, Osama Y. Al-Dirbashi , et al., Semi-micro column HPLC of triazolam in rat plasma and brain microdialysate and its application to drug interaction study with itraconazole. J. Pharm. Biomed. Anal., 2003. 30: p. 1809-1816.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top