(3.238.174.50) 您好!臺灣時間:2021/04/11 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂知諺
研究生(外文):Shih-Yen Lu
論文名稱:熱處理對三種國產人工造林木化學性質之影響
論文名稱(外文):Effect of Heat Treatment on the Chemical Properties of Three Domestic Plantation Woods
指導教授:卓志隆
指導教授(外文):Chih-Lung Cho
口試委員:林亞立盧崑宗吳志鴻
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:森林暨自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:122
中文關鍵詞:熱處理木材化學成分分析FTIR熱重分析
外文關鍵詞:Heat treatment of woodChemical composition analysisFouier Transform Infrared Spectroscopy (FTIR)Thermogravimetric analysis (TGA).
相關次數:
  • 被引用被引用:2
  • 點閱點閱:272
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
熱處理能改善木材尺寸安定性、提升耐腐朽性與改變木材的顏色,但卻會造成木材質量的損失與部分機械強度的下降。本研究以柳杉(Cryptomeria japonica)、杉木(Cunninghamia lanceolata )、大葉桃花心木(Swietenia macrophylla) 三種人工林國產木材為研究對象。以4種不同溫度(170℃、190℃、210℃及230℃)和處理時間(1、2、4 、8 h )進行熱處理,探討熱處理對於木材化學性質的影響。結果顯示木材經由熱處理後,木材的化學成分會發生改變,抽出物和木質素相對含量隨熱處理溫度與時間增加而增加,但全纖維素、纖維素、半纖維素相對含量會隨著熱處理溫度與處理時間增加而減少。柳杉、杉木熱處理條件超過190℃、4 h,半纖維素減少率會大於20%、大葉桃花心木則是超過170℃、2 h,半纖維素顯著下降20%以上,同時木材之物理強度亦會有明顯的下降。FTIR光譜分析顯示熱處理木材之羥基(-OH)、羰基(C=O)化合物、纖維素C1鏈結的吸收峰相對強度會降低,木質素苯環結構吸收峰比值則會增加。此外熱處理木材的結晶度指數(CI)皆會提升。而熱重分析的結果為熱處理木材會比未處理材有較高的熱穩定性,而熱處理溫度越高的木材,其α纖維素熱裂解起始溫度則有逐漸下降的趨勢。

Heat treatment can improve the dimensional stability,decay resistance and change the color of wood , but it will cause mass loss and a reduction in some mechanical strength of wood.Three plantation wood species including Japanese cedar (Cryptomeria japonica),China fir (Cunninghamia lanceolata ) and big- leaf mahogany (Swietenia macrophylla) were used in this study.Heat treatments were carried out at four different temperatures (170℃,190℃,210℃,230℃) and processing times (1,2,4,8 h).The objective of this study was to investigate the effect of heat treatment on the chemical properties of woods.The results showed that the chemical compositions of wood changed through heat treatment.The relative extractives and lignin content of wood increased with increasing the treated temperatures and durations of processing time. However the relative percentage of holocellulose, cellulose,and hemicellulose of wood decreased with increasing the temperatures and times.There would be over 20% decrease in hemicellulose of Japanese cedar and China fir when the heat treated temperatures were above 190℃ and time periods over 4 h,and those of big-leaf mahogany were above 170℃ and over 2 h. Moreover, a significant reduction in mechanical strength of heat treated wood at the same time.The relative absorption intensities of the hydroxy group,carbonyl group,and the cellulose C1 link of heat treated woods determined from FTIR analysis were lower than those of control specimens.The relative absorption intensity of benzene ring structure of lignin of heat treated woods were higher than those of controls.In addition,the degree of crystalline index of wood was also increased after heat treatment.The heat treated wood showed better thermal stability than the untreated wood with respect to thermogravimetric analysis.The oneset temperature of pyrolysis for α-cellulose was gradually decreased with an increase of heat-treated temperatures.

目錄
摘要 I
Abstract II
表目錄 VIII
壹、前言 1
貳、文獻回顧 3
一、熱處理材生產背景 3
二、熱處理對木材性質之影響 6
(一)化學性質 7
(二)物理性質與力學強度 16
參、材料與方法 23
肆、結果與討論 31
一、木材化學組成分分析結果與變化率 31
(一)乙醇-甲苯抽出物 31
(二)全纖維素、α纖維素、半纖維素 32
(三)木質素 34
(四)灰分 35
二、熱處理木材的化學成分變化與物理性質關係 45
(一)化學成分與質量損失率 45
(二) 化學成分與木材顏色 47
(三) 化學成分與木材平衡含水率 50
(四) 化學成分變化與木材全收縮率、抗收縮效能ASE 52
(五) 化學成分變化與木材強度性能 56
三、FTIR分析 63
四、熱處理木材的熱重分析 76
陸、參考文獻 92
柒、附錄 103


丁昭義。1990。木材化學。國立編譯館。
王松永。1993。木材物理學。國立編譯館。
王松永、丁昭義。2008。林產學(上冊)。台灣商務印書館。
馬子斌、陳政靜、熊如珍、黃清吟、陳欣欣、翟思湧。1979。重要商用木材之ㄧ般性質。台灣省林業試驗所林業叢刊1號。
陳志昇。2013。熱處理對三種國產造林木力學性質之影響。國立宜蘭大學森林暨自然資源學系碩士論文。
黃咨文。2011。熱處理對三種國產造林木物理性質之影響。國立宜蘭大學森林暨自然資源學系碩士論文。
郭瑋玲。2011。柳杉與相思樹熱處理材知製造與性質。國立中興大學森林系碩士論文。
張上鎮、吳季玲、王升陽、張惠婷。1997。反射式傅立葉轉換紅外光譜分析在林產化學研究之應用。林產工業16(4)825-838。
張豐吉、杜明宏。1988。台灣產重要樹種化學性質之研究(II)十樹種之化學性質。中華林學季刊22(1):101-109。
張豐吉、杜明宏。1989。 台灣產重要樹種化學性質之研究(III)十三樹種之化學性質。中華林學季刊22(1):43-51。
蔡明哲、陳克恭。2011。歐洲木材防腐工業與市場現況。林業研究專訊18(5):19-21。
Aksoy, A., Deveci, M., Baysal, E., & Toker, H. (2011). Colour and gloss changes of socts pine after heat modification. Wood Research, 56(3), 329-336.
Akyildiz, M. H., & Ates, S. (2008). Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey. Agriculture and Biological Sciences, 4(6): 660-665.
Bal, B. C., & Bektaş, İ. (2013). The effects of heat treatment on some mechanical properties of juvenile wood and mature wood of Eucalyptus grandis. Drying Technology, 31(4), 479-485.
Beall, F. C., & Eickner, H. W. (1970). Thermal degradation of wood components.U.S.D.A.Forest Service Research Paper FPL130.
Bekhta, P., & Niemz, P. (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung, 57(5), 539-546.
Bhuiyan, M. T. R., Hirai, N., & Sobue, N. (2000). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431-436.
Boonstra, M. J., & Tjeerdsma, B. (2006). Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff, 64(3), 204-211.
Boonstra, M. J., Van Acker, J., Tjeerdsma, B. F., & Kegel, E. V. (2007). Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of forest science, 64(7), 679-690.
Borrega, M., & Kärenlampi, P. P. (2008). Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz als Roh-und Werkstoff, 66(1), 63-69.
Borrega, M., & Kärenlampi, P. P. (2010). Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. European Journal of Wood and Wood Products, 68(2), 233-235.
Brito, J. O., Silva, F. G., Leão, M. M., & Almeida, G. (2008). Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource technology, 99(18), 8545-8548.
Cademartori, P. H. G., dos Santos, P. S., Serrano, L., Labidi, J., & Gatto, D. A. (2013). Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products, 45, 360-366.
Candelier, K., Dumarçay, S., Pétrissans, A., Desharnais, L., Gérardin, P., & Pétrissans, M. (2013). Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuum. Polymer Degradation and Stability, 98(2), 677-681.
Charrier, B., Haluk, J. P., & Metche, M. (1995). Characterization of European oakwood constituents acting in the brown discolouration during kiln drying. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 49(2), 168-172.
Esteves, B., Graca, J., & Pereira, H. (2008). Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3), 344-351.


Esteves, B., Marques, A. V., Domingos, I., & Pereira, H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 41(3), 193-207.
Esteves, B., Marques, A. V., Domingos, I., & Pereira, H. (2008). Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology, 42(5), 369-384.
Esteves, B. M., Domingos, I. J., and Pereira, H. M. (2008). Pine wood modification by heat treatment in air, BioRes. 3(1), 142-154.
Fengel, D., & Wegener, G. (Eds.). (1983). Wood: chemistry, ultrastructure, reactions. Walter de Gruyter.
Food and Agriculture Organization of the United Nations (2010) Global forest resources assessment (2010) main report ,Rome.
Garcia, R. A., de Carvalho, A. M., de Figueiredo Latorraca, J. V., de Matos, J. L. M., Santos, W. A., & de Medeiros Silva, R. F. (2012). Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, 46(1-3), 41-52.
Gunduz, G., Korkut, S., & Korkut, D. S. (2008). The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresour Technol, 99(7), 2275-2280.
Gunduz, G., & Aydemir, D. (2009). Some physical properties of heat-treated hornbeam (Carpinus betulus L.) wood. Drying Technology, 27(5), 714-720.
Hakkou, M., Pétrissans, M., Gérardin, P., & Zoulalian, A. (2006). Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer degradation and stability, 91(2), 393-397.
Hall, A. H. (2002). Chronic arsenic poisoning. Toxicology letters, 128(1), 69-72.
Hill, C. A. (2007). Wood modification: chemical, thermal and other processes (Vol. 5). John Wiley & Sons.
Homan, W., Tjeerdsma, B., Beckers, E., & Jorissen, A. (2000, July). Structural and other properties of modified wood. In World Conference on Timber Engineering (Vol. 5).
Hon, D. N. S., & Shiraishi, N. (2000). Wood and Cellulosic Chemistry, Revised, and Expanded. CRC Press.
Hyttinen, M., Masalin-Weijo, M., Kalliokoski, P., & Pasanen, P. (2010). Comparison of VOC emissions between air-dried and heat-treated Norway spruce, Scots pine and European aspen wood. Atmospheric Environment, 44(38), 5028-5033.
Inari, G. N., Petrissans, M., & Gerardin, P. (2007). Chemical reactivity of heat-treated wood. Wood science and technology, 41(2), 157-168.
Kačíková, D., Kačík, F., Čabalová, I., & Ďurkovič, J. (2013). Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource technology, 144, 669-674.
Kamdem, D. P., Pizzi, A., & Jermannaud, A. (2002). Durability of heat-treated wood. Holz als Roh-und Werkstoff, 60(1), 1-6.
Kartal, S. N., Hwang, W. J., & Imamura, Y. (2008). Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Materials Processing Technology, 198(1), 234-240.
Kartal, S. N., Hwang, W. J., & Imamura, Y. (2007). Water absorption of boron-treated and heat-modified wood. Journal of Wood Science, 53(5), 454-457.
Katz, S. A., & Salem, H. (2005). Chemistry and toxicology of building timbers pressure‐treated with chromated copper arsenate: a review. Journal of applied toxicology, 25(1), 1-7.
Kaygin, B., Gunduz, G., & Aydemir, D. (2009). Some physical properties of heat-treated Paulownia (Paulownia elongata) wood. Drying Technology, 27(1), 89-93.
Kocaefe, D., Chaudhry, B., Poncsak, S., Bouazara, M., & Pichette, A. (2007). Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. Journal of Materials Science, 42(3), 854-866.
Kocaefe, D., Poncsak, S., Doré, G., & Younsi, R. (2008). Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als Roh-und Werkstoff, 66(5), 355-361.
Kocaefe, D., Poncsak, S., & Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517-537.
Korkut, D. S., & Guller, B. (2008). The effects of heat treatment on physical properties and surface roughness of red-bud maplewood. Bioresource technology, 99(8), 2846-2851.
Korkut, S., Alma, M. H., & Elyildirim, Y. K. (2009). The effects of heat treatment on physical and technological properties and surface roughness of European Hophornbeam (Ostrya carpinifolia Scop.) wood. African Journal of Biotechnology, 8(20).
Korkut, S., & Hiziroglu, S. (2009). Effect of heat treatment on mechanical properties of hazelnut wood. Materials & Design, 30(5), 1853-1858.
Kreber, B., Fernandez, M., & McDonald, A. G. (1998). Migration of kiln brown stain precursors during the drying of radiata pine sapwood. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 52(4), 441-446.
Kubojima, Y., Okano, T., & Ohta, M. (2000). Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46(1), 8-15.
Li, T., Cai, J. B., Gu, L. B., Ding, T., & Zhou, D. G. (2013). Correction Factors for a Radio Frequency-Type Moisture Meter for Heat-Treated Wood. BioResources, 8(4), 5549-5560.
Luostarinen, K., & Möttönen, V. (2004). Effects of log storage and drying on birch (Betula pendula) wood proanthocyanidin concentration and discoloration. Journal of wood science, 50(2), 151-156.
Manninen, A. M., Pasanen, P., & Holopainen, J. K. (2002). Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmospheric Environment, 36(11), 1763-1768.
Mburu, F., Dumarçay, S., Bocquet, J. F., Petrissans, M., & Gérardin, P. (2008). Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degradation and Stability, 93(2), 401-405.
Mehmet, A. L., & Suuml; leyman, K. (2012). The effect of heat treatment on some chemical properties and colour in Scots pine and Uludağ fir wood. International Journal of Physical Sciences, 7(21), 2854-2859.
Metsä-Kortelainen, S., Antikainen, T., & Viitaniemi, P. (2006). The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 C, 190 C, 210 C and 230 C. Holz als Roh-und Werkstoff, 64(3), 192-197.
Mitsui, K. (2004). Changes in the properties of light-irradiated wood with heat treatment. Holz als Roh-und Werkstoff, 62(1), 23-30.
Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20(3), 848-889.
Nuopponen, M., Vuorinen, T., Jämsä, S., & Viitaniemi, P. (2003). The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology, 37(2), 109-115.
Navi, P., & Sandberg, D. (2012). Thermo-hydro-mechanical wood processing. CRC Press.
Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969-1975.
Papadopoulos, A. N., & Pougioula, G. (2010). Mechanical behaviour of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Bioresource technology, 101(15), 6147-6150.
Poncsák, S., Kocaefe, D., Bouazara, M., & Pichette, A. (2006). Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology, 40(8), 647-663.
Rapp,A.O.(2001).Review on heat treatment of wood. The European commission research directorate,Hamburg,Germany.
Rowell, R. M. (Ed.). (2012). Handbook of wood chemistry and wood composites. CRC press.
Santos, J. A. (2000). Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology, 34(1), 39-43.
Shebani, A. N., Van Reenen, A. J., & Meincken, M. (2008). The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta, 471(1), 43-50.
Shen, D. K., Gu, S., & Bridgwater, A. V. (2010). Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. Journal of analytical and applied pyrolysis, 87(2), 199-206.
Shi, J. L., Kocaefe, D., & Zhang, J. (2007). Mechanical behaviour of Québec wood species heat-treated using ThermoWood process. Holz als Roh-und Werkstoff, 65(4), 255-259.
Sjöström, E. (1993). Wood chemistry: fundamentals and applications. Gulf Professional Publishing.
Stamm, A. J., & Hansen, L. A. (1937). Minimizing wood shrinkage and swelling Effect of heating in various gases. Industrial & Engineering Chemistry, 29(7), 831-833.
Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial & Engineering Chemistry, 48(3), 413-417.
Sundqvist, B. (2002). Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. European Journal of Wood and Wood Products, 60(2), 106-114.
Sundqvist, B., & Morén, T. (2002). The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. European Journal of Wood and Wood Products, 60(5), 375-376.
Sundqvist, B. (2004). Colour changes and acid formation in wood during heating.
Surini, T., Charrier, F., Malvestio, J., Charrier, B., Moubarik, A., Castéra, P., & Grelier, S. (2012). Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Science and Technology, 46(1-3), 487-501.
ThermoWood Association. (2003). ThermoWood Handbook. Wood Focus Oy, Box, 284.
Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., & Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149-153
Tjeerdsma, B. F., & Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff, 63(2), 102-111.
Tuong, V. M., & Li, J. (2010). Effect of heat treatment on the change in color. BioResources, 5(2), 1257-1267.
Unsal, O., & Ayrilmis, N. (2005). Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science, 51(4), 405-409.
Wikberg, H., & Liisa Maunu, S. (2004). Characterisation of thermally modified hard-and softwoods by 13 C CPMAS NMR. Carbohydrate Polymers, 58(4), 461-466.
Windeisen, E., & Wegener, G. (2008). Behaviour of lignin during thermal treatments of wood. Industrial Crops and Products, 27(2), 157-162.
Yamauchi, S., Iijima, Y., & Doi, S. (2005). Spectrochemical characterization by FT-Raman spectroscopy of wood heat-treated at low temperatures: Japanese larch and beech. Journal of wood science, 51(5), 498-506.
Yan-jun, X., Yi-xing, L., & Yao-xing, S. (2002). Heat-treated wood and its development in Europe. Journal of Forestry Research, 13(3), 224-230.
Yildiz, S., Gezer, E. D., & Yildiz, U. C. (2006). Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment, 41(12), 1762-1766.
Yildiz, S., & Gümüşkaya, E. (2007). The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment, 42(1), 62-67.
Zhao, R. J., Jiang, Z. H., Hse, C. Y., & Shupe, T. F. (2010). Effects of steam treatment on bending properties and chemical composition of moso bamboo (Phyllostachys pubescens). Journal of Tropical Forest Science, 197-201.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔