跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝米柔
研究生(外文):Mi-Jou Hsieh
論文名稱:基因轉殖水稻表現石斑魚虹彩病毒主要外鞘蛋白之研究
論文名稱(外文):Studies on Transgenic Rice Expressing the Major Capsid Protein of Grouper Iridovirus
指導教授:尤進欽郭純德郭純德引用關係
指導教授(外文):Jinn-Chin YiuChun-Teh Kuo
口試委員:劉程煒
口試委員(外文):Cheng-Wei LIU
口試日期:2015-06-26
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:園藝學系碩士班
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:基因轉殖水稻石斑魚虹彩病毒
外文關鍵詞:Transgenic RiceGrouper Iridovirus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
石斑魚虹彩病毒(Grouper Iridovirus, GIV)可以感染超過30種魚類,為系統性感染,造成高致病率及高死亡率。目前,台灣對抗此病毒使用的疫苗為不活化疫苗,需要高成本的人力資源。期望以植物疫苗的優勢,不需注射疫苗的高成本冷鏈需求,也不會對魚苗造成緊迫傷害。藉由添加於飼料中即可進行口服疫苗接種,作為目前疫苗改進較具潛力的發展方向。
本試驗使用ˋ台農67ˊ水稻,以農桿菌攜帶質體pKcMCP進行基因轉殖石斑魚虹彩病毒外鞘蛋白(major capsid protein)基因,並構築以CaMV 35S啟動子使MCP基因在水稻轉殖株中全株表現。以子葉盤和胚誘導的癒傷組織作為感染的培植體,子葉盤癒傷組織經農桿菌感染期間加熱或未加熱,與胚癒傷組織生長於蔗糖或麥芽糖的兩種碳水化合物來源培養基,經由kanamycin篩選後獲得29株不同處理的轉殖株,其再生率為1.45-3.06%。經PCR分析後27株呈正反應,轉殖成功率為1.16-3.24%。再以西方墨點檢驗水稻葉片,於50 kDa有目標條帶,顯示轉殖株能表現重組MCP蛋白質。T1代植株亦可檢驗到MCP基因,其重組的基因能穩定遺傳,遺傳率約85.7%以上。後續的研究可進行小鼠口服免疫試驗,朝向轉殖植物食用疫苗的方向發展。

Grouper iridovirus (GIV) can infect more than 30 types of fish. Infection is systemic, causing high morbidity and mortality rates. Currently, an inactivated vaccine is used in Taiwan to eradicate this virus, which is a considerable cost burden in terms of human resources. The advantages of plant-based vaccines are expected to facilitate developing a vaccine that requires no cold-chain processing and that avoids damaging the fish fry. In addition, the vaccine can be added to fish feed for oral delivery, indicating greater potential for developing an improved vaccine.
The experiment involved using Tainung 67 rice to deliver the pKcMCP to target the major capsid protein (MCP) gene of GIV by using the cauliflower mosaic virus 35S promoter to systemically express MCP gene in a transgenic rice plant. Cotyledon-disc callus and embryogenic callus were employed as the infected explants. The cotyledon-disc callus was either heated or not heat-treated during the period of Agrobacterium tumefaciens infection, and the embryogenic callus was cultured in either sucrose or maltose. Following treatment with kanamycin for selection, 29 differently treated transgenic plants were obtained, with a regeneration rate of 1.45%–3.06%. After an analysis by polymerase chain reaction, 27 plants exhibited a forward reaction, with a success rate of 1.16%–3.24% for the transgenic plants. Subsequently, the rice leaves were examined by western blot analysis, with the target band of 50 kDa indicating that the transgenic plants can express the recombinant MCP. The MCP gene was also examined in T1 generation plants, and the recombinant gene exhibited hereditary stability, with the approximate heritability exceeding 85.7%. Future studies should consider conducting oral immunization experiment on mice models and to develop oral vaccines derived from transgenic plants.

中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
前言 1
前人研究 2
一、石斑魚產業簡介 2
二、石斑魚虹彩病毒介紹 3
三、石斑魚虹彩病毒感染之臨床症狀 4
四、虹彩病毒疫苗 4
五、魚疫苗接種方法及注射疫苗製作方式 5
1.不活化疫苗(死毒疫苗) 5
2.活毒疫苗(減毒疫苗) 6
3.重組次單位疫苗 7
六、虹彩病毒疫苗待解決問題 7
七、口服疫苗 8
1.海藻酸 8
2.酵母菌 8
3.基因轉殖植物疫苗 9
4.植物疫苗應用於水產養殖 9
(1)水稻疫苗 9
(2)稻米應用於水產養殖 10
(3)水稻癒傷組織生產重組虹彩病毒蛋白 10
八、影響農桿菌轉殖效率的因子 10
1.水稻的培植體種類 11
2.農桿菌感染期間應用加熱處理11
3. 組織培養培養基成分之滲透處理 12
材料與方法 18
一、試驗材料 18
二、試驗方法 18
1.確認農桿菌帶有MCP基因的構築 18
(1)抽取農桿菌中MCP基因 18
(2)農桿菌質體之聚合酶連鎖反應 19
(3)電泳分析擴增的MCP基因位置 19
2.培植體培養 19
(1)胚誘導癒傷組織 19
(2)子葉盤誘導癒傷組織 20
3. 農桿菌感染與植株再生 20
(1)農桿菌培養 20
(2)農桿菌與培植體共培養 20
(2.1)胚共培養-使用含麥芽糖/蔗糖的感染液 20
(2.2)子葉盤共培養-使用含蔗糖的感染液搭配有/無加熱處理 20
(3)癒傷組織再生 21
(4)發根 21
(5)馴化出瓶 21
4. 再生植株之分子層次分析 22
4.1. DNA分子層次 22
(1)水稻葉片基因體DNA之萃取 22
(2)水稻葉片基因體DNA之聚合酶鏈鎖反應(Polymerase chain reaction,PCR) 22
(3)瓊脂膠電泳分析 23
4.2. 蛋白質分子層次 23
(1)水稻葉片總可溶性蛋白質萃取 23
(2)水稻葉片總可溶性蛋白質定量 24
(3)西方墨點鑑定水稻葉片MCP蛋白質定性 24
5. 轉殖株子代之種植與鑑定 25
(1)轉殖株子代之分子分析 25
(2)轉殖株子代之種子對kanamycin抗性測試 26
結果 27
一、農桿菌質體之確認 27
二、基因轉殖水稻植株之再生情形 27
1.再生流程 27
2.ˋ台農67號ˊ水稻再生情形綜合分析 28
三、基因轉殖再生水稻植株之分子分析 29
1. 擬轉植株(T0)葉片進行PCR分析 29
2. 擬轉植株(T0)葉片蛋白質定性分析 29
四、ˋ台農67號ˊ轉殖株之子代綜合分析 29
1. 再生水稻植株的採種情形 29
2. 子代植株-加熱處理組 30
3. 子代植株-未加熱處理組 30
4. 子代植株-蔗糖組 30
討論 43
一、農桿菌媒介轉殖水稻之植株再生及採種情形 43
1.農桿菌感染期間之加熱處理 43
2.培養基中碳水化合物的影響 45
3.採種情形 47
二、基因轉殖水稻T1代遺傳率 47
三、蛋白質表現 48
參考文獻 49
附件 57
附件一、pKcMCP之質體構築 57
附件二、MCP基因核酸序列 58

劉芯萱。2007。奈瑟氏菌表面抗原基因轉殖至水稻之研究。國立宜蘭大學園藝學系碩士論文。
行政院農業委員會。2013。102年農業統計年報。
行政院農業委員會。2013。中華民國102年農產貿易統計要覽。
黃淑敏。2012。從研發到上市石斑魚虹彩病毒不活化疫苗之開發歷程。農業生技產業季刊。31: 26-31。
Aloni, R. 1980. Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures. Planta 150: 255-263.
Anwar Hussain, Md. Taslim Hussain, Md. Raihan Ali, and S. M. Mahabubur Rahman. 2005. Effect of different carbon sources on in vitro regeneration of Indian pennywort Centella asiatica (L.). Pak. J. Biol. Sci. 8: 963-965.
Ayres, N. M. and W. D. Park. 1994. Genetic transformation of rice. Crit. Rev. Plant Sci. 13: 219-239.
Babiuk, S., D. J. Asper, D. Rogan, G. K. Mutwiri, and A. A. Potter. 2008. Subcutaneous and intranasal immunization with type III secreted proteins can prevent colonization and shedding of Escherichia coli O157: H7 in mice. Microb. Pathog. 45: 7-11.
Bachmann, M. F., C. Bast, H. Hengartner, R. M. Zinkernagel. 1994. Immunogenicity of a viral model vaccine after different inactivation procedures. Med. Microbiol. Immunol. 183: 95-104.
Ballesteros, N. A., S. Rodriguez Saint-Jean, S. I. Perez-Prieto. 2014. Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol. 37: 220-228.
Becwar, M. R., E. E. Chesick, L. W. Handley, and M. R. Rutter. 1995. Method for regeneration of coniferous plants by somatic embryogenesis. U.S. patent 5,413,930.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brudeseth, B. E., R. Wiulsrød, B. N. Fredriksen, K. Lindmo, K.-E. Løkling, M. Bordevik, N. Steine, A. Klevan, and K. Gravningen. 2013. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35: 1759-1768.
Burstyn, D. and T. Hageman. 1996. Strategies for viral removal and inactivation. Dev. Biol. Stand. 88: 73.
Caipang, C. M. A., I. Hirono, and T. Aoki. 2006. Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream, Pagrus major. Fish Shellfish Immunol. 20: 597-609.
Chinchar, V. G., S. Essbayer, J. G. He, A. Hyatt, T. Miyazaki, V. Seligy, and T. Williams. 2005. Family Iridoviridae. Virus Taxonomy: 8th report of the International Committee on the Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press 163-175.
Cho, M. J., H. Yano, D. Okamoto, H. K. Kim, H. R. Jung, K. Newcomb, V. K. Le, H. S. Yoo, R. Langham, and B. B. Buchanan. 2004. Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed. Plant Cell Reports 22: 483-489.
Chou, H. Y., C. C. Hsu, T. Y. Peng. 1998. Isolation and characterization of a pathogenic iridovirus from cultured grouper (Epinephelus sp.) in Taiwan. Fish Pathol. 33: 201-206.
Clarke, J. L., M. T. Waheed, A. G. Lössl, I. Martinussen, and H. Daniell. 2013. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol. Biol. 83: 33-40.
Companjen, A. R., D. E. Florack, J. H. Bastiaans, C. I. Matos, D. Bosch, and J. H. Rombout. 2005. Development of a cost-effective oral vaccination method against viral disease in fish. Dev. Biol. (Basel). 121: 143-150.
Davis, H. L. and M. J. McCluskie. 1999. DNA vaccines for viral diseases. Microbes Infect. 1: 7-21.
De Cleene, M. and J. De Ley. 1976. The host range of crown gall. Bot. Rev. 42: 389-466.
Dong, C., X. Xiong, Y. Luo, S. Weng, Q. Wang, and J. He. 2013. Efficacy of a formalin-killed cell vaccine against infectious spleen and kidney necrosis virus (ISKNV) and immunoproteomic analysis of its major immunogenic proteins. Vet. Microbiol. 162: 419-428.
Dong, Y., S. Weng, J. He, and C. Dong. 2013. Field trial tests of FKC vaccines against RSIV genotype Megalocytivirus in cage-cultured mandarin fish (Siniperca chuatsi) in an inland reservoir. Fish Shellfish Immunol. 35: 1598-1603.
Doran, P. M. 2000. Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11: 199-204.
Faria, R. T., F. N. Rodrigues, L. V. R. Oliveira, and C. Muller. 2004. In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Hortic. Bras. 22: 780-783.
Fischer, R. and N. Emans. 2000. Molecular farming of pharmaceutical proteins. Transgenic Res. 9: 279-299.
Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department, 2012. Fishery and Aquaculture Statistics.
Fu, X., N. Li, Y. Lai, L. Liu, Q. Lin, C. Shi, Z. Huang, and S. Wu. 2012. Protective immunity against iridovirus disease in mandarin fish, induced by recombinant major capsid protein of infectious spleen and kidney necrosis virus. Fish Shellfish Immunol. 33: 880-885.
Ge, X., Z. Chu, Y. Lin, and S. Wang. 2006. A tissue culture system for different germplasms of indica rice. Plant Cell Reports. 25: 392-402.
Giri, P. K., S. B. Sable, I. Verma, G. K. Khuller. 2005. Comparative evaluation of intranasal and subcutaneous route of immunization for development of mucosal vaccine against experimental tuberculosis. FEMS Immunol. Med. Microbiol. 45: 87-93.
Gu, Q., N. Han, J. Liu, M. Zhu. 2006. Expression of Helicobacter pylori urease subunit B gene in transgenic rice. Biotechnol. Lett. 28: 1661-1666.
Gurel, S., E. Gurel, R. Kaur, J. Wong, L. Meng, H. Q. Tan, and P. G. Lemaux. 2009. Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports. 28: 429-444.
Hansen, G. 2000 Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microbe Interact. 13: 649-657.
Hashizume, F., S. Hino, M. Kakehashi, T. Okajima, D. Nadano, N. Aoki, and T. Matsuda. 2008. Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res. 17: 1117-1129.
Heppell, J. and H. L. Davis. 2000. Application of DNA vaccine technology to aquaculture. Adv. Drug Deliv. Rev. 43: 29-43.
Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6: 271-282.
Hiei, Y., Y. Ishida, K. Kasaoka, and T. Komari. 2006. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 87: 233-243.
Horowitz, B. and E. Ben-Hur. 1995. Strategies for viral inactivation. Curr. Opin. Hematol. 2: 484.
Huang, C., X. Zhang, K. Y. Gin, and Q. W. Qin. 2004. In situ hybridization of a marine fish virus, Singapore grouper iridovirus with a nucleic acid probe of major capsid protein. J. Virol. Methods 117: 123-128.
Ignacimuthu, S., S. Arockiasamy, and R. Terada. 2000. Genetic transformation of rice: current status and future prospects. Curr. Sci. 79: 186-195.
Imaseki, H. 1986. Ethylene. In: Takahashi N. (ed.) Chemistry of plant hormones. CRC Press, Boca Raton 249-264.
Inouye, K., K. Yamano, Y. Maeno, K. Nakajima, M. Matsuoka, Y. Wada, and M. Sorimachi. 1992. Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathol. 27: 19-27.
Iraqi, D. and F. M. Tremblay. 2001. The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca) somatic embryos. Physiol. Plant. 111: 381-388.
Jagga-Chugh, S., S. Kachhwaha, M. Sharma, A. Kothari-Chajer, and S. L. Kothari. 2012. Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult. 109: 401-410.
Jain, R. K., M. R. Davey, E. C. Cocking, and R. Wu. 1997. Carbohydrate and osmotic requirements for high- frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. 48: 751-758.
Jiang, B. M., Y. H. Wang, J. F. Saluzzo, K. Bargeron, M. J. Frachette, and R. I. Glass. 2008. Immunogenicity of a thermally inactivated rotavirus vaccine in mice. Hum. Vaccines 4: 143-147.
Joosten, P. H. M., E. Tiemersma, A. Threels, C. Caumartin-Dhieux, and J. H. W. M. Rombout. 1997. Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish Shellfish Immunol. 7: 471-485.
Jung, S. J., and M. J. Oh. 2000. Iridovirus-like infection associated with high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. J. Fish Dis. 23:223-226.
Karthikeyan, A., S. K. Pandian, and M. Ramesh. 2011. Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. sub sp. indica cv. ADT 43). Plant sci. 181: 258-268.
Kawakami, H. and K. Nakajima. 2002. Cultured fish species af- fected by red sea bream iridoviral disease from 1996 to 2000. Fish Pathol. 37: 45-47.
Khanna, H., D. Becker, J. Kleidon, and J. Dale. 2004. Centrifugation Assisted Agrobacterium tumefaciens-mediated Transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol. Breed. 14: 239-252.
Kim, T. J., E. J. Jang, and J. L. Lee. 2006. Iridovirus infection of cultured juvenile flounder (Paralichthys olivaceus) in nursery. Korean J Vet Res. 46: 21-25.
Kim, T. J., E. J. Jang, and J. L. Lee. 2008. Vaccination of rock bream, Oplegnathus fasciatus, using a recombinant major capsid protein of fish iridovirus. J. Fish Dis. 31: 547-551.
Kishor, P. B. K. and G. M. Reddy. 1986. Retention and revival of regenerating ability by osmotic adjustment in long-term cultures of four varieties of rice. J. Plant Physiol. 126: 49-54.
Komari, T. and T. Kubo. 1999. Methods of genetic transformation: Agrobacterium tumefaciens. In: (Vasil IK ed) Molecular improvement of cereal crops. Kluwer Acad, Dordrecht. Netherlands. 43-48.
Last, D. I. and R. I. S. Brettell. 1990. Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium. Plant Cell Reports 9: 14-16.
Lawrence, S. A., 2000. Beta-propiolactone: viral inactivation in vaccines and plasma products. PDA J. Pharm. Sci. Technol. 54: 209-217.
Lawrence, S., 1999. Beta-propiolactone and aziridine: their applications in organic synthesis and viral inactivation. Chim. Oggi 17: 51-54.
Lee, K. S., H. S. Jeon, and M. K. Kim. 2002. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue Organ Cult. 71: 237-244.
Leong, J. C. 1993. Molecular and biotechnological approaches to fish vaccines. Curr. Opin. Biotechnol. 4: 286-293.
Lepa A, A. K. Siwicki, and E. Terech-Majewska. 2010. Application of DNA vaccines in fish. Pol. J. Vet. Sci. 13: 213-215.
Li, X. Y., F. H. Huang, J. B. Murphy, and E. E. Gbur. 1998. Polyethylene glycol and maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.) In Vitro Cell. Dev. Biol.-Plant 3: 22-26.
Lin, D. G. and C. S. Wang. 2014. Extraction of Total Proteins of Rice Plant. Bio-protocol. 4: 1-8.
Lin, Y. J. and Q. Zhang. 2005. Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports 23: 540-547.
Mao, J., R. P. Hedrick, and V. G. Chinchar. 1997. Molecular characterization, sequence analysis, and taxonomic position of newly isolated fish iridoviruses. Virology 229: 212-220.
Matsuoka, S., K. Inouye, and K. Nakajima. 1996. Cultured fish species affected by red sea bream iridoviral disease from 1991 to 1995. Fish Pathol. 31: 233-234.
Mikalsen, A. B., J. Torgersen, P. Aleström, A. H. Hellemann, E. O. Koppang and E. Rimstad. 2004. Protection of Atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Dis. Aquat. Org. 60: 11-20.
Minor, P. 2012. Considerations for setting the specifications of vaccines. Expert Rev. Vaccines 11: 579–585.
Nakajima, K., Y. Maeno, J. Kurita, Y. Inui. 1997. Vaccination against red sea bream iridoviral disease in red sea bream. Fish Pathol. 32: 205-209.
Navarro-Alvarez, W., P. S. Baenziger, K. M. Eskridge, D. R. Shelton, V. D. Gustafson, and M. Hugo. 1994. Effect of sugars in wheat anther culture media. Plant Breed. 112: 53-62.
Nishi, T., Y. Yamada, and E. Takahashi. 1968. Organ redifferentiation and plant regeneration in rice callus. Nature. 219: 508-509.
Nishizawa, T., H. J. Gye, I. Takami, and M. J. Oh. 2012. Potentiality of a live vaccine with nervous necrosis virus (NNV) for sevenband grouper Epinephelus septemfasciatus at a low rearing temperature. Vaccine 30: 1056-1063.
Nochi, T., H. Takagi, and Y. Yuki., L. Yang, T. Masumura, M. Mejima, U. Nakanishi, A. Matsumura, A. Uozumi, T. Hiroi, S. Morita, K. Tanaka, F. Takaiwa, and H. Kiyono. 2007. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl. Acad. Sci. U. S. A. 104: 10986-10991.
Oh, S. Y., M. J. Oh, and T. Nishizawa. 2014. Potential for a live red seabream iridovirus (RSIV) vaccine in rock bream Oplegnathus fasciatus at a low rearing temperature. Vaccine. 32: 363-368.
Opabode, J. 2006. Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol. Mol. Biol. 1: 12-20.
Ou-yang, Z., P. Wang, X. Huang, J. Cai, Y. Huang, S. Wei, H. Ji, J. Wei, Y. Zhou, and Q. Qin. 2012. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides. Dev. Comp. Immunol. 38: 254-261.
Panathula, C. S., M. D. Mahadev, and C. V. Naidu. 2014. Effect of different carbohydrates on In vitro plant regeneration of Centella asiatica (L.) -An important antijaundice medicinal plant. Int. J. Med. Arom. Plants 4: 41-47.
Park, S. H., S. R. M. Pinson, and R. H. Smith. 1996. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol. 32: 1135-1148
Patel, M., R. E. Dewey, and R. Qu. 2013. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tissue Organ Cult. 114: 19-29.
Pierik, R. L. M. 1987. In vitro Culture of Higher Plants, Martinus Nijhoff, Dordrecht.
Plant, K. P. and S. E. LaPatra. 2011. Advances in fish vaccine delivery. Dev. Comp. Immunol. 35: 1256-1262.
Qin, Q. W., C. Y. Shi, K. Y. H. Gin, and T. J. Lam. 2002. Antigenic characterization of a marine fish iridovirus from grouper Epinephelus spp. J. Virol. Methods 106: 89-96.
Qin, Q. W., T. J. Lam, Y. M. Sin, H. Shen, S. F. Chang, G. H. Ngoh, and C. L. Chen. 2001. Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. Journal of Virological Methods 98: 17–24.
Roberts-Oehlschlager, S. L., J. M. Dunwell, and R. Faulks. 1990. Changes in sugar content of barley anthers during culture on different carbohydrates. Plant Cell Tissue Organ Cult. 2: 77-85.
Roy, M., R. K. Jain, J. S. Rohila, and R. Wu. 2000. Production of agronomically superior transgenic rice plants using Agrobacterium transformation methods: present status and future perspectives. Curr. Sci. 79: 954–960.
Rybicki, E. P. 2009. Plant-produced vaccines: promise and reality. Drug discovery today 14: 16-24.
Sahoo, R. K. and N. Tuteja. 2012. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR-64. GM Crops Food. 3: 1-6.
Seo, J. Y., H. J. Chung, and T. J. Kim. 2013. Codon-optimized expression of fish iridovirus capsid protein in yeast and its application as an oral vaccine candidate. J. Fish Dis. 36: 763-768.
Shimmoto, H., K. Kawai, T. Ikawa, S. I. Oshima. 2010. Protection of red sea bream Pagrus major against red sea bream iridovirus infection by vaccination with a recombinant viral protein. Microbiol. Immunol. 54: 135-142.
Shin, Y. J., T. H. Kwon, J. Y. Seo, and T. J. Kim. 2013. Oral immunization of fish against iridovirus infection using recombinant antigen produced from rice callus. Vaccine. 31: 5210-5215.
Shri, M., A. Rai, P. K. Verma, P. Misra, S. Dubey, S. Kumar, S. Verma, N. Gautam, R. D. Tripathi, P. K. Trivedi, and D. Chakrabarty. 2013. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma. 250: 631-636.
Sivamani, E. and R. Qu. 2006. Expression enhancement of a rice polyubiquitin promoter. Plant Mol. Biol. 60: 225-239.
Solá, R. J., and K. Griebenow. 2010. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. Biodrugs 24: 9-21.
Streatfield, S. J. and J. A. Howard. 2003. Plant-based vaccines. Int. J. Parasitol 33: 479-493.
Suzuki, K., O. Kaminuma, L. Yang, T. Takai, A. Mori, M. Umezu-Goto, T. Ohtomo, Y. Ohmachi, Y. Noda, S. Hirose, K. Okumura, H. Ogawa, K. Takada, M. Hirasawa, T. Hiroi, and F. Takaiwa. 2011. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol. J. 9: 982-990.
Takagi, H., T. Hiroi, L. Yang, Y. Tada, Y. Yuki, and K. Takamura. 2005. A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2- mediated IgE responses. Proc. Natl. Acad. Sci. U. S. A. 48: 17525–17530.
Tatsuhiko, A., I. Hiroshi, K. Hiroshi, and Y. Yoshikazu. 2015. Novel Transgenic Rice-Based Vaccines. Arch. Immunol. Ther. Exp. 63: 87-99.
Tidona, C. A., P. Schnitzler, R. Kehm, and G. Darai. 1998. Is the major capsid protein of iridoviruses a suitable target for the study of viral Evolution? Virus Genes 16: 59-66.
Tie, W. W., F. Zhou, L. Wang, W. B. Xie, H. Chen, X. H. Li, and Y. J. Lin. 2012. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: Lessons from transformation assays and genome-wide expression profiling. Plant Mol. Biol. 78: 1-18.
Tokuhara, D., Y. Yuki, T. Nochi, T. Kodama, M. Mejima, S. Kurokawa, Y. Takahashi, M. Nanno, U. Nakanishi, F. Takaiwa, T. Honda, and H. Kiyono. 2010. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin- producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc. Natl. Acad. Sci. U. S. A. 107: 8794-8799.
Tonnesen, H. H. and J. Karlsen. 2002. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28: 621-630.
Toriyama, K., Y. Arimoto, H. Uchimiya, and K. Hinata. 1988. Transgenic plants after direct gene transfer into protoplasts. J. Biotechnol. 6: 1072-1074.
Uddin, M. R. 1993. Somatic embryogenesis in gymnosperms. U.S. patent 5,187,092.
Vain, P., M. D. McMullen, and J. J. Finer. 1993. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Reports 12: 84-88.
Walmsley, A. M. and C. J. Arntzen. 2000. Plants for delivery of edible vaccines. Curr. Opin. Biotechnol. 11: 126-129.
Wang, C. S., S. Y. Chao, C. C. Ku, C. M. Wen, and H. H. Shih. 2009. PCR amplification and sequence analysis of the major capsid protein gene of megalocytiviruses isolated in Taiwan. J. Fish Dis. 32: 543-550.
Williams, T. 1996. The iridoviruses. Adv. Virus Res. 46: 345-412.
Williams, T., V. Barbosa-Solomieu, and V. G. Chinchar. 2005. A decade of advances in iridovirus research. Adv. Virus Res. 65: 173-248.
Wirz, H., A. F. Sauer-Budge, J. Briggs, A. Sharpe, S. Shu, and A. Sharon. 2012. Automated production of plant-based vaccines and pharmaceuticals. J. Lab. Autom. 17: 449-457.
Wolf, K. 1988. Fish viruses and fish viral diseases. Ithaca, New York: Cornell University Press.
Wu, S. Q., X. H. Li, P. Hou-Jun, and Z. B. Huang. 1997. Research on the pathogen of the outbreak-infective diseases in Siniperca chuatsi. J Fish China 21: 56-60.
Wu, Y. Y., Q. J. Chen, M. Chen, J. Chen, and X. C. Wang. 2005. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Russ. J. Plant Physiol. 54: 524-529.
Yang, Z. Q., Q. Q. Liu, Z. M. Pan, H. X. Yu, and X. A. Jiao. 2007. Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine 25: 591-598.
Ye, X., S. K. Brown, R. Scorza, J. Cordts, and J. C. Sanford. 1994. Genetic transformation of peach tissues by particle bombardment. J. Am. Soc. Hortic. Sci. 119: 367-373.
Zakai, N., N. Ballas, M. Hershkovitz, S. Broido, R. Ram, and A. Loyter. 1993. Transient gene expression of foreign genes in preheated protoplasts: stimulation of expression of transfected genes lacking heat shock elements. Plant Mol. Biol. 21: 823-834.
Zhang, X. X., H. Yu, X. H. Wang, X. Z. Li, Y. P. Zhu, H. X. Li, S. J. Luo, and Z. G. Yuan. 2013. Protective efficacy against Chlamydophila psittaci by oral immunization based on transgenic rice expressing MOMP in mice. Vaccine 31: 698-703.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文