跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭雅欣
研究生(外文):Ya-Hsin Hsiao
論文名稱:機場出境班機碳排放及登機門指派之研究
論文名稱(外文):A Study of the Airport Carbon Emissions of Outbound Flight and Gate Assignment
指導教授:趙清成趙清成引用關係
指導教授(外文):Ching-Cheng Chao
口試委員:楊大輝徐賢斌
口試委員(外文):Ta-Hui YangHsien-Pin Hsu
口試日期:2015-09-14
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:航運管理研究所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:機場登機門指派碳排放跑道碳成本
外文關鍵詞:AirportGate AssignmentCarbon EmissionsRunwayCarbon Costs
相關次數:
  • 被引用被引用:2
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
隨著環境的變遷及溫室效應等對地球環境產生的衝擊日漸嚴重,國際間對環境保護及節能減碳等議題日益重視,已成為全球性共同的議題。近年來國際經貿活動及旅遊蓬葧的發展,帶動航空市場快速成長,進而航空器所排放之噪音、空氣汙染及溫室氣體也隨之增加。如何降低航空運輸對環境與機場週邊住戶之衝擊,是機場管理者及航空公司需面對的重要課題。
由於各機場跑道、滑行道及航站大廈登機門之設計並不相同,故班機由不同停機坪到各跑道之滑行距離亦有所差異,造成各班機在滑行時產生不同之碳排放量。為精確的計算各班機在滑行階段所產生之碳排放量,本研究考慮各機型由不同登機門至起飛跑道之滑行距離,建構班機滑行階段之碳排放量估算模式。在考慮停機坪之排班、班機完成指派之限制、各航空公司所在之航站大廈、不同機型所需停機坪大小及其起飛所需跑道長度之限制下,以出境班機滑行所產生碳排放量最小為目標之登機門指派模式。
依據歐盟排放交易體系(European Union - Emissions Trading Scheme,EU-ETS)規定,航空公司每年之碳排放量限額中有85%的免費額度,其他15%應於交易市場中付費購買,若超出每年之碳排放量限額則會被處以罰款。本研究另以航空公司出境班機滑行碳排放成本最小為目標之指派模式。
以臺灣桃園國際機場為實例之研究結果顯示,當以本研究所設立碳排放量最小之登機門指派結果可得最少之碳排放量,且較現有登機門指派結果減少8.93%之碳排放量。而本研究碳排放成本最小之登機門指派結果較現有登機門指派結果減少10.32%之碳排放成本,且與碳排放量最小之登機門指派結果比較,則為減少2.54%之碳排放成本,因此本研究之結果可提供機場營運者及航空公司參考。
The issue of environment protecting and reduce the carbon emission are more and more important between countries. In recent years, the increasing numbers of international trade and traveling makes the rapid development in aviation market. However, the amount of air pollution and Greenhouse Gas also increase. It’s the big problem for airport operators and airlines that how to decrease the environment and the residents who near airport might be adversely affected.
As a result of runways, taxiways and boarding gates that design is not the same in each airport. Therefore, the sliding distance of flights from each tarmac to each runway are also differences, that cause each flight produced carbon emissions are differences.In considering scheduling the tarmac, the flight completed assignment, the airlines in which terminal building, Aircraft that the size restrictions on the tarmac and the length restrictions of the runway to take off. This study presents a set of models that cause minimum the airlines carbon emissions of outbound flight.
According to the regulations of the European Union - Emissions Trading Scheme (EU-ETS), 85% of aviation emissions allowances will be granted for free (grandfathered) to aircraft operators, and 15% of allowances will be auctioned each year. It will be fined when exceeding the aviation emissions allowances. This study presents another set of models that cause minimum the airlines carbon costs of outbound flight.
A case study using data from a Taiwan Taoyuan International Airport, this study of models that cause minimum the carbon emissions of the gate assignment results can be the least of emissions, and than comparison with the existing gate assignment to reduce the 8.93 percent of carbon emissions. This study of models that cause minimum the carbon costs of the gate assignment comparison with the existing gate assignment to reduce the 10.32 percent of carbon costs. And than comparison with minimum the airlines carbon costs of the gate assignment to reduce the 2.54 percent of carbon costs. This study presents another set of models that cause minimum the airlines carbon costs of outbound flight. The results of this study provide be airport operators and airlines as be reference operating.
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
1.3 研究範圍及限制 6
1.4 研究方法及流程 7
第二章 文獻回顧 9
2.1 航空運輸之碳排放計算 9
2.2 登機門指派 12
2.2.1 規劃性登機門指派之文獻 13
2.2.2 即時性登機門指派之文獻 16
2.3小結 19
第三章 模式構建 20
3.1 問題特性 20
3.2 研究範圍、問題假設及限制 24
3.3 模式建構 25
3.3.1 指標、參數、變數與集合之定義 25
3.3.2 出境班機碳排放量之模式建構 27
3.3.3 航空公司碳排放成本之模式建構 38
3.4 小結 41
第四章 實證分析 43
4.1 實例背景 43
4.1.1 登機門與滑行距離基本資料 43
4.1.2 機型基本資料 47
4.1.3 班機基本資料 48
4.2 實例分析 50
4.2.1 出境班機碳排放量之登機門指派結果分析 50
4.2.2 出境班機碳排放成本之登機門指派結果分析 59
第五章 結論與建議 72
5.1 結論 72
5.2 建議 73
參考文獻 75
一、中文部分 75
二、英文部分 75
三、網站部分 77

1.汪進財,1992,機門指派最佳化模式,運輸計劃季刊,第21卷,第2期,247-260。
2.汪進財、張束珍,1996,動態機門指派績效評估,運輸計畫季刊,第25卷,第1期,121-144。
3.邱瀚暘、盧曉櫻,2011,新式航空器營運對機場環境成本之影響-噪音及引擎廢氣,長榮大學航運管理學系碩士論文,臺南市。
4.柯景文、袁曉峰,2008,短程飛行節油操作分析,國立成功大學民航研究所碩士論文,臺南市。
5.陳春益、李宇欣、盧華安,1997,時空網路應用於機門指派問題之研究,運輸學刊,第10卷,第3期,1-20。
6.陳恩崧、盧曉櫻,2008,航空器引擎排放成本對航空公司航線營運之影響,長榮大學航運管理學系碩士論文,臺南市。
7.盧佩伸、汪進財,2013,航機耗油分析與節油策略,國立交通大學管理學院運輸物流學程碩士論文。
8.盧華安,2001,因應班機延遲之最佳化即時機門指派,運輸計劃季刊,第30卷,第4期,849-870。
9.顏上堯、杜宇平、朱橋榮,2003,機門數量最少化網路模式之研究,運輸學刊,第15卷,第2期,149-164。
10.顏上堯、張家銘,1997,機門指派最佳化之研究,中國土木水利學刊,第9卷,第3期,491-500。
11.顏上堯、韓復華、霍俊明,1998,大型機門指派問題最佳化,中國工業工程學刊,第15卷,第3期,245-254。
1.ACI, 2013. World Airport Traffic Report , American Concrete Institute, Montreal.
2.Babic, O., Teodorovic, D., and Tosic, V., 1984. Aircraft stand assignment to minimize walking. Journal of Transportation Engineering, 110(1), 55-66.
3.Boeing, 2014. World Air Cargo Forecast 2014-2015, Boeing, Seattle.
4.Cheng, Y., 1997. A knowledge-based airport gate assignment system integrated with mathematical programming. Computers and Industrial Engineering, 32(4), 837-852.
5.Chester, M. and Horvath, A., 2007. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas, and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air. Working Paper, UCB-ITS-VWP-2007-7, University of California, California.
6.Chao, C. C., 2014. Assessment of carbon emission costs for air cargo transportation. Transportation Research – part D: Transport and Environment, 33, 186-195.
7.Filippone, A., 2008. Analysis of carbon-dioxide emissions from transport aircraft. Journal of Aircraft, 45(1), 185-197.
8.Gosling, G. D., 1990. Design of an expert system for aircraft gate assignment. Transportation Research Part A: General, 24(1), 59-69.
9.Haghani, A. and Chen, M. C., 1998. Optimizing gate assignments at airport terminals. Transportation Research Part A: Policy and Practice, 32(6), 437-454.
10.Hamzawi, S. G., 1992. Lack of airport capacity: exploration of alternative solutions. Transportation Research Part A: Policy and Practice, 26(1), 47-58.
11.IATA, 1989. Airport Terminals Reference Manual, Seventh Edition, International Air Transport Association: Montreal.
12.ICAO, 2013. Annex 14, Aerodromes-Volume I, Aerodrome Design and Operations , Sixth Edition, International Civil Aviation Organization: Montreal.
13.ICAO, 2010. ICAO Carbon Emissions Calculator, Third Edition, International Civil Aviation Organization: Montreal.
14.ICAO, 2014. ICAO Carbon Emissions Calculator Methodology, Fifth Edition, International Civil Aviation Organization: Montreal.
15.Lu, C. and Morrell, P., 2006. Determination and applications of environmental costs at different sized airports-aircraft noise and engine emissions. Transportation, 33(1), 45-61.
16.Mangoubi, R. S., and Mathaisel, D. F. X., 1985. Optimizing gate assignment at airport terminals. Transportation Science, 19(2), 173-188.
17.Horonjeff R., and McKelvey F. X., 1994. Planning and Design of Airports, Fourth Edition, McGraw Hill: New York.
18.Su, Y. Y., and Srihari, K., 1993. A knowledge based aircraft-gate assignment advisor. Computers and Industrial Engineering, 25(1), 123-126.
19.Tang, C. H., 2010. A gate reassignment model for the Taiwan Taoyuan Airport under temporary gate shortages and stochastic flight delays. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 41(4), 637-650.
20.Tang, C. H., Yan, S., and Hou, Y. Z., 2010. A gate reassignment framework for real time flight delays. A Quarterly Journal of operations research, 8(3), 299-318.
21.Vanderstraeten, G., and Bergeron, M., 1988. Automatic assignment of aircraft to gates at a terminal. Computers and Industrial Engineering, 14(1), 15-25.
22.Yan, S., Chi, C. J., and Tang, C. H., 2006. Inter-city bus routing and timetable setting under stochastic demands. Transportation Research Part A: Policy and Practice, 40(7), 572-586.
23.Yan, S., Chen, C. Y., and Tang, C. H., 2009. Airport gate reassignment following temporary airport closures. Transportmetrica, 5(1), 25-41.
24.Yan, S., and Huo, C. M., 2001. Optimization of multiple objective gate assignments. Transportation Research Part A: Policy and Practice, 35(5), 413-432.
1.行政院環境保護署,2013, 溫室氣體排放統計,http://www.epa.gov.tw/fp.asp?fpage=cp&xItem=10052&ctNode=31352&mp=epa,2015年9月7日。
2.交通部運輸研究所,2010,運輸部門能源與溫室氣體資料之構建與盤查機制之建立(3/3)-建立運輸能源效率指標與運輸成長預測模式, http://real.iot.gov.tw/ct.asp?xItem=576232&ctNode =2484&mp=5,2015年9月7日。
3.電子式飛航指南,2015,臺北飛航情報區飛航指南(2015年3月19日),http://eaip.caa.gov.tw/eaip/eAISPackages.faces,2015年9月7日。
4.臺灣桃園國際機場,2015,航班資訊,http://www.taoyuan-airport.com/chinese/flight_arrival/,2015年9月7日。
5.Google地圖,2014,華盛頓杜勒斯國際機場衛星空照圖,https://www.google.com.tw/maps/@38.946998,-77.4659571,4951m/data=!3m1!1e3?hl=zh-TW,2015年9月7日。
6.Mymaps網站,2014,華盛頓杜勒斯機場地圖,http://www.permaculturemarin.org/iad-washington-dulles-map/,2015年9月7日。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top