(54.236.58.220) 您好!臺灣時間:2021/02/28 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭楷翔
研究生(外文):Kai-Siang Peng
論文名稱:修正淺基礎因土壤液化所造成之沉陷量評估法
論文名稱(外文):A Study for Modifying Estimation Method of Liquefaction Induced Settlement at Shallow Foundation
指導教授:盧之偉盧之偉引用關係
指導教授(外文):Chih-Wei Lu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:營建工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:154
中文關鍵詞:數學解析LIQCAALID有限元素法土壤液化沉陷量
外文關鍵詞:SettlementMathematical analysisSoil liquefactionFinite element methodALIDLIQCA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:406
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
座落於淺基礎建物下方的鬆散飽和砂土,當地震發生時,其超額孔隙水壓力上升,使砂土與砂土之間的顆粒接觸分離導致其有效應力下降,此時土壤像液體般,則稱土壤液化,而此現象易導致結構物下方砂土失去承載力,造成結構物沉陷、傾斜或倒塌,對淺基礎建物尤其嚴重。
本研究首先介紹作者在日本愛媛大學利用離心機試驗來模擬淺基礎建物座落於易液化土層上,探討其建物下方土壤受震後變化及建物沉陷量,再以兩種有限元素法(ALID、LIQCA)來驗證離心機試驗結果,其中ALID為簡易快速評估方法,以土壤液化後剪力模數降低概念作為核心分析方法,而LIQCA為較複雜的水土動力耦合FEM分析,可與離心機試驗結果得到相似結果。
本文更進一步地將張秉洋(2011)及黃紫翎(2013)所提出的以數學解評估矩形體座落於液化土上沉陷量作修正,考量真實的複雜工程環境下所遭遇之變化,如地下水位深度、土壤滲透係數,及地震波大小與地震時間長短取決。本研究收集了國內外對淺基礎建物受震後沉陷量的實際、實驗、數值分析案例,共計183組,套入本文修正之數學解析方法中驗證,結果顯示本研究方法之評估與實際沉陷多落在於準確或略偏保守區間,證明此評估方法的可行性,盼望能可提供給結構或大地工程領域及實務設計之參考。
When earthquake occurs, the excess pore water pressure of loose saturated soils beneath shallow founded buildings would increase and lead to the effective stress decrease, because the contact of particles would decrease. At this time, the soil behaves like liquid, so called liquefaction. And this phenomenon easily leads to the loss of the bearing capacity of the sand, resulting in a structure subsidence, tilt or collapse.
In this study, the author firstly used the centrifuge experiment at Ehime University in Japan to simulate the shallow founded building located on liquefied soil, and studied the dynamic response of soil beneath their building settlement, then use two finite element methods (ALID and LIQCA) to verify the centrifuge test results which ALID is a simple and quick assessment method and able to consider the soil liquefaction induced shear modulus reduction, and LIQCA is for complex dynamic coupling analysis of soil and water, and able to get similar results with the centrifuge test results.
Further, this study modified settlement estimation method proposed by Chang (2010) and Huang (2013). In their settlement estimation method, a force equilibrium equation for rectangular object sinking in the liquefied soils were considered and viscosity was studied. In this study, the author considered more variables, such as change of permeability, change of water table, determination of seismic wave magnitude. 183 sets data collected from literatured including field observation, experiment and numerical analysis were employed in this proposed method. It could present that the estimation showed an acceptable agreement to the desired one. Finally the proposed method is expected to provide a good and reliable tool in practice.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的及方法 1
1.3 論文內容 2
第二章 文獻回顧 4
2.1 土壤液化 4
2.2 土壤液化對結構物所造成之災害 5
2.3 土壤液化對淺基礎建物之沉陷量相關研究 12
2.3.1 現地調查 12
2.3.2 物理模型試驗 14
2.3.3 數值分析模擬 15
第三章 離心機試驗 28
3.1 前言 28
3.2 試驗設備及試驗方法 28
3.2.1 離心機模型試驗振動台 28
3.2.2 積層版剪力試驗箱(Laminar Box) 28
3.2.3 試驗模型設計 29
3.2.4 試驗土壤 29
3.2.5 模型土層製作及離心機運轉準備 29
3.2.5.1 孔隙水壓計準備 29
3.2.5.2 土層鋪設 29
3.2.5.3 土層飽和及飽和度 30
3.2.5.4 淺基礎放置及離心機運轉 31
3.3 離心模型振動台試驗結果 41
3.3.1 不同深度下水平加速度變化 41
3.3.2 不同深度下超額孔隙壓力變化 41
3.3.3 淺基礎受震後沉陷 41
第四章 數值分析與離心機試驗比較 46
4.1 前言 46
4.2 ALID有效應力分析 46
4.2.1 程式基本介紹 46
4.2.2 程式運算方法 46
4.2.2.1 靜態條件下 46
4.2.2.2 動態條件下 47
4.2.2.2.1 液化應力比 ( ) 47
4.2.2.2.2 液化抵抗率 ( ) 47
4.2.2.2.3 剪力模數折減 ( ) 47
4.2.2.2.4 代入程式(ini2d.exe)計算 48
4.2.3 模擬離心機試驗 48
4.2.3.1 土壤參數及模型網格 48
4.2.3.2 邊界條件及地震波 49
4.2.3.3 靜態、動態條件運算 49
4.2.4 分析結果 49
4.3 LIQCA有效應力分析 56
4.3.1 砂土模型理論 56
4.2.2.3 動力隅合分析方法 56
4.2.2.4 液化砂土的動力本構模型 56
4.3.2 模型網格設計及土壤參數 59
4.3.3 邊界條件及地震波 60
4.3.4 數值分析結果 60
4.3.4.1 水平加速度歷時比較 60
4.3.4.2 超額孔隙水壓力歷時比較 60
4.3.4.3 淺基礎沉陷歷時比較 61
第五章 以解析解推估淺基礎之黏滯係數 67
5.1 前言 67
5.2 矩形塊體座落於液化土的沉陷解析 67
5.3 黏滯係數推導 69
5.3.1 有效應力分析ALID計算 69
5.3.2 有效應力分析LIQCA計算 80
5.4 不同地下水位地盤及不同滲透係數下鬆砂地盤之地盤分析 85
第六章 以數學解析評估淺基礎受震後沉陷量 87
6.1 前言 87
6.2 淺基礎建物案例探討 87
6.2.1 淺基礎承載力評估 87
6.2.2 液化土層相對密度評估 87
6.2.3 地震波及地震時間評估 88
6.2.4 實際案例與沉陷量之關係 88
6.3 文獻案例及評估比較 89
6.3.1 Shahir et al (2010)淺基礎沉陷量公式計算 89
6.3.2 本研究數學解析之淺基礎沉陷量計算 90
6.3.2.1 不同地震波大小之取決 91
6.3.2.2 不同地震時間長短之取決 91
6.3.2.3 考量地下水位 92
6.3.2.4 考量滲透係數 93
6.3.2.5 考量地下水位及滲透係數 94
6.3.2.6 針對各種狀態下敏感度分析 95
6.3.2.7 針對較小的淺基礎承載力再作修正 96
6.3.3 本研究數學解析與前人Shahir et al. (2010)公式作比較 97
第七章 結論與建議 123
7.1 結論 123
7.2 建議 127
參考文獻 128
附錄A離心模型試驗原理 131
1.吳偉特,1979,「台灣地區砂性土壤液化潛能之初步分析」,中國土木水利學刊,第六卷,第二期,第39-66頁。
2.李崇正,林志棟,林俊雄,1994,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,頁649-669。
3.陳銘鴻,2002,「土壤液化成因、災害與復建」,國家地震工程研究中心,第107-123頁。
4.張秉洋,2011,「淺基礎於液化土上之受震反應與土壤液化引起沉陷之簡易評估法」,國立高雄第一科技大學,碩士論文。
5.盧之偉,張秉洋,2011,「座落在液化土上淺基礎結構之動態分析」,第14屆大地工程研討會論文集。
6.黃紫翎,2013,「以離心機試驗及數值分析探討飽合土與非飽合土上淺基礎物受震後之沉陷量」,國立高雄第一科技大學,碩士論文。
7.安田進、小宮真悟,(2003) ,「砂質土の低拘束圧下における液状化後の変形特性」,土木学会地震工学論文集,Vol. 27, pp.1-5。
8.西山 高士、松下 克也、樋口 俊一、石井 雄輔、川崎 淳志,(2012),「液状化に伴う小規模建築物の沈下被害に及ぼす地下水位の影響」,日本建築学会大会学術講演梗概集, pp.485-486。
9.Adachi, T., Iwai, S., Yasui, M. & Sato, Y. (1992). “Settlement and inclination of reinforced-concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake”, Proc.10th World Conf. Earthquake Engng, Madrid 1, pp.147–152.
10.Acacio, A., Kobayashi, Y., Towhata, I., Bautista, R.T. & Ishihara, K. (2001). “Subsidence of building foundation resting upon liquefied subsoil: case studies and assessment” , Soils and Foundations, Vol. 41, No. 6, pp.111–128.
11.ALID 研究会:2 次元液状化流動解析プログラム ALID/Win 第二版、2005.6。
12.Andrianopoulos, K. I., Bouckovalas, G. D., Karamitros, D. K. & Papadimitriou, A. G. (2006). “Effective stress analysis for the seismic response of shallow foundations on liquefiable sand”, 6th European Conference on Numerical Methods in Geotechnical Engineering, Graz, 6 - 8 September, pp.211-216.
13.Almani, Z. A., Ansari, K. & Memon, A. A. (2012). “Mechanism of liquefaction-induced large settlements of buildings”, Mehran University Research Journal of Engineering & Technology, Vol. 31, pp.635-650.
14.Asgari, A., Golshani, A. & Bagheri, M. (2014). “Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand”, J. Earth Syst. Sci. 123, No. 2, pp.365–379.
15.Byrne, P. N. (1991). “A cyclic shear-volume coupling and pore pressure model for sand”, In: Second Int. Conf. Recent Advances in Geotechnical Earthquake Engg. and Soil Dynamics, St. Louis, Missouri, Vol. 2, pp.47-55.
16.Budhu, M. (2000), “Soil Mechanics and Foundations”, Wiley.
17.Bertalot, D., Brennan, A.J. & Villalobos, F.A., (2013). “Influence of bearing pressure on liquefaction-induced settlement of shallow foundations”, Geotechnique, Vol. 63, No. 5, pp.391-399.
18.Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., & Wilson, D. (2010). “Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 1, pp.151-164.
19.Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., & Wilson, D. (2010). “Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 7, pp.918-929.
20.Dashti, S. & Bray, J. D. (2013). “Numerical Simulation of Building Response on Liquefiable Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 8, pp.1235-1249.
21.Hushmand, B., Scott, R. F. & Crouse, C. B. ( 1988). “Centrifuge liquefaction tests in a laminar box” Geotechnique, Vol. 38, No.2, pp.253-262.
22.Ishihara, K. (1985). “Stability of Natural Deposits During Earthquakes”, Proc., 11th Int. Conf. on Soil Mech. and Found. Eng., San Francisco, Vol. 1, pp.321-376.
23.Irisawa, T., Yasuda, S., Yoshida, N., Kiku, H. and Morimoto, H. (2000), “Residual deformation of caisson, sheet pile and ground by simplified analysis,” Proc., 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Paper No. 2484.
24.Liu, L. & Dobry, R. (1997). “Seismic response of shallow foundation on liquefaction sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 6, pp.557-567.
25.Marques, A.S., Coelho, P.A.L.F., Cilingir, U., Haigh, S.K., & Madabhushi, S.P.G. (2013) “Centrifuge modelling of liquefaction-induced effects on shallow foundations with different bearing pressures”, 2nd Eurofuge conference on physical modelling in geotechnics, delft.
26.Marasini, N. & Okamura, M. (2014) “Numerical simulation of centrifuge tests on seismic behavior of residential building on liquefiable foundation soil”, Computer Methods and Recent Advances in Geomechanics, pp.847-852.
27.Oka, F., Yashima, A., Taguchi, Y. & Yamashita, S. (1999). “A cyclic-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus”, Geotechnique, Vol. 49, No. 5, pp.661-680.
28.Oka, F., Furuya, K. & Uzuoka, R. (2004). “Numerical simulation of cyclic behavior of dense sand using a cyclic elasto-plastic model”, Cyclic Behaviour of Soils and Liquefaction Phenomena, Triantafyllidis(ed), Taylor & Francis Group, London, ISBN 90 5809 620 3.
29.Okamura, M., Tomida, Y., Okamoto, T., & Yasuhara, H. (2012). “Remedial measure for highway embankments on liquefaction prone foundation”, Second international conference on performance-based design in earthquake geotechnical engineering, No. 6.15.
30.Seed, H. B. & Idriss, I. M. (1971), “Simplified procedure for evaluating soil liquefaction potential”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 97, No. 9, pp.1249-1273.
31.Seed, H. B. (1976). “Evaluation of Soil Liquefaction Effects on Level Ground During Earthquakes”, Liquefaction Problems in Geotechnical Engineering, ASCE Annual Convention and Exposition, Philadelphia, PA, October, pp.1-109.
32.Sawicki, A. (2003). “A simple model of sinking of breakwater due to earthquake-induced subsiol liquefaction”, Archives of Hydroengineering and Environmental Mechanics, Vol. 50, No. 4, pp.381-400.
33.Sancio, R.B., Bray J.D., Durgunoglu, T. & Onalp, A. (2004). “Performance of Buildings Over Liquefiable Ground in Adapazari, Turkey”, 13th World Conference on Earthquake Engineering, No. 935.
34.Sawicki, A., Mierczynski, J. (2009). “On the behavior of liquefied soil”, Computers and Geotechnics, Vol. 36, pp.531-536.
35.Shahir, H. & Pak, A. (2010). “Estimating liquefaction-induced settlement of shallow foundations by numerical approach”, Computers and Geotechics, Vol. 37, No. 3, pp.267-279.
36.Trifunac, M. D. & Brady A. G. (1975). “A study on the duration of strong earthquake ground motion”, Bulletin of the Seismological Society of America, Vol. 65, No. 3, pp.581-626.
37.Toyota, H., Nakamura, K. & Kazama, M. (2004). “Shear and liquefaction characteristics of sandy soils in triaxial tests”, Soils and foundations, Vol. 44, No. 2, pp.117-126.
38.Yoshimi, Y. & Tokimatsu, K. (1977). “Settlement of buildings on saturated sand during earthquakes”, Soils and Foundations, Vol. 17, No. 1, pp.23-28.
39.Yasuda, S., Yoshida, N., Adachi, K., Kiku, H. and Gose, S. (1999), “A simplified analysis of liquefaction-induced residual deformation”, Proc. of the 2nd International Conference on Earthquake Geotechnical Engineering.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔