跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康維哲
研究生(外文):Wei-Zhe Kang
論文名稱:搖擺式隔震結構之多軸振動台試驗
論文名稱(外文):Shaking Table Test of Rocking Base-isolated Structures Subjected to multi-axis Earthquake Loads
指導教授:鄭錦銅
指導教授(外文):Chin-Tung Cheng
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:營建工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:175
中文關鍵詞:振動台試驗阻尼比隔震自復位搖擺
外文關鍵詞:Shaking Table TesDamping RatioSelf-CenteringBase-isolationRocking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前人研發新型隔震元件,以改善傳統滑動式隔震元件在小型地震作用下勁度不足而在大型地震作用下位移過大問題。搖擺式隔震結構可以使結構物在小型地震力作用下維持不動,在中大型地震作用下產生剛體搖擺來隔絕地震能量,在振動過程當中結構未有任何破壞發生,且地震過後因鋼材之回復力可使結構物回復原位,達到自復位功能。當施加於結構之外力大於某一特定值時,結構開始反覆擺動,其衰減快慢則端視於搖擺過程中隔震元件撞擊基礎面之消能大小。結構反應可用力變形關係與上述理論發散阻尼以修正彈性反應譜推估之。
本文主要研究多軸地震對隔震結構地震反應之影響。研究包含多軸地震、隔震元件之斷面寬高比,搖擺撞擊面(平面及高階曲面),水平雙軸地震震波比與震波型態(El Centro、Kobe、或TCU-129)等參數對於結構隔震行為之影響。比較水平單軸地震、水平雙軸地震以及水平垂直雙軸地震等多軸地震結構反應,試驗結果表示,水平雙軸地震將放大結構反應且隨震波比之增加而增加。比較不同震波型態結構反應發現,TCU-129結構反應最小。單軸地震反應以Kobe震波最大,雙軸地震及單軸橫向加垂直以El Centro震波結構反應最大。結構反應及主振週期隨寬高比增加而遞增且不同搖擺撞擊面之結構反應差異不大。
Literature showed the weakness existed in the traditional sliding base-isolated bearing such as not enough stiffness under moderate earthquakes or extensive displacement under severe earthquakes. Therefore, the motion of rocking bearing in new design will not be initiated under moderate earthquakes while rocks in rigid body motion to isolate and dissipate the seismic energy under severe earthquakes. And the superstructure remains undamaged during the excitation and self-centered due to the restoring force of self-weight of the superstructure and springs in the rocking interface after earthquakes. The vibration of the structure is damped throughout each impact of the bearing on the foundation surface. Based on the force-displacement relations and the effective damping of the systems, the seismic response of the structure may be estimated through the modified elastic response spectrum.
The objective of this research is to investigate seismic performance of base-isolated structure under the excitation of multi-direction earthquakes. Investigated parameters include: multi-direction earthquakes, forms of earthquakes, intensify of earthquakes¸ aspect ratio of isolators and contact surface of rocking toe (plane or high order curve). Test results show that seismic response of base-isolated structure may be amplified by bi-directional earthquakes, compared with uni-direction earthquakes, or vibrated by additional vertical excitation and its response will be increased with the increase of intensify of bi-directional earthquakes. Among three forms of earthquakes, it is found that seismic response is smallest when excited by TCU-129. In addition, seismic response is largest when excited by uni-directional Kobe earthquake, while it is largest for the bi-directional or additional vertical excitation in the forms of El Centro earthquake. It is also found that seismic response and vibration period is increased with the increase of aspect ratio of the bearing, while it is not affected by the change of contact surface of rocking toe.
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1研究動機與背景 1
1.2研究目的與內容 1
第二章 搖擺結構之文獻回顧與理論模式 3
2.1 文獻回顧 3
2.2 搖擺隔震結構系統之勁度 5
2.2.1 搖擺隔震結構之基底剪力係數Cc 5
2.3搖擺隔震結構系統之消能機制 10
2.3.1 動能折減係數(Kinetic Energy Reduction Factor) 10
2.3.2發散阻尼比(Radiation Damping Ratio,ξrd)[1] 13
2.3.3 理論有效阻尼比 15
2.3.4 高阻尼修正彈性反應譜 15
第三章搖擺隔震結構之振動台實驗 18
3.1 試體設計 18
3.2 實驗參數 24
3.3 實驗儀器布置和設備 28
3.4 實驗流程 34
3.5 實驗結果 37
第四章 實驗結果討論 60
4.1 前言 60
4.2 不同參數下搖擺隔震結構之地震反應 60
4.2.1多軸地震下不同震波型式之搖擺結構反應 60
4.2.2 相同震波型式下多軸地震搖擺隔震結構反應 61
4.2.3 不同盤面下搖擺隔震結構之反應 62
4.2.4 不同寬高比下搖擺隔震結構之反應 62
4.2.5 不同震波強度比下搖擺隔震結構之反應 63
4.2.6 水平單軸地震與水平垂直雙軸地震的差異 79
4.3 頻率域分析 81
4.4 P-Δ之遲滯迴圈 88
4.5 小結 97
第五章 理論與實驗阻尼比之比對 98
5.1 前言 98
5.2 水平雙軸地震理論阻尼比之評估 98
5.3 抬高位移之修正 98
5.4 理論阻尼比算例 102
5.5 理論與實驗阻尼比結果討論 106
第六章 結論與建議 112
6.1結論 112
6.2 建議 114
參考文獻 115
附錄A 118
附錄B 152
1.趙志泓 (2013).「搖擺式隔震元件之耐震性能研究」,國立高雄第一科技大學碩士論文,1月。
2.Housner , G.W. (1963).“The behavior of inverted pendulum structures during earthquakes,Bulletin of the Seismologic- al Society of American, Vol. 53, No.2, pp.403-417.
3.Aslam, M., Godden, W.G. and Scalise D.T. (1980). “Earthquake rocking response of rigid blocks,Journal of Structural Engineering, ASCE, Vol. 106, No.2, pp. 377-392.
4.Chopra, A.K. and Yim, C-S. (1985). “Simplified earthquake analysis of structures with foundation uplift,Journal of Structural Engineering, ASCE, Vol. 111, No. 4, pp. 906-930.
5.Mander J. B. and Cheng, C.T. (1997). ”Seismic resistance of bridge piers based on damage avoidance design,Technical Report NCEER 97-0014, Buffalo, NY, USA.
6.孔垂昌 (1999). 「搖晃橋柱應用於橋樑減震之研究」,國立交通大學土木系碩士論文,6月。
7.Makris, N. and Zhang, J. (2001). “Rocking response of anchored blocks under pulse-type motions,Journal of Engineering Mechanics, Vol. 127, No. 5, pp. 484-493.
8.黃吉瑞 (2001).「搖晃機制在高橋墩橋樑減震之應用」,立交通大學土木系碩士論文,7月。
9.赫偉業 (2003).「搖擺橋柱自由振動行為之試驗研究」,國立高雄第一科技大學營建工程系碩士論文,7月。
10.盧威宏 (2005).「搖擺橋柱之振動台試驗」,國立高雄第一科技大學營建工程系碩士論文,2月。
11.葉奕麟 (2008).「搖擺式隔震之承之理論與實驗研究」,國立高雄第一科技大學營建工程系碩士論文,7月。
12. 陳福林(2008).「搖擺橋柱加裝摩擦阻尼器之振動台試驗」,國立高雄第一科技大學碩士論文,1月。
13. 林俊雄(2015).「搖擺式隔震元件加裝摩擦鉸之耐震性能研究」,國立高雄第一科技大學碩士論文,1月。
14.鄭錦銅、江銘鴻 (2013).「自復位搖晃式支座運用於建築隔震之可行性研究」,振動與衝擊,第32卷,第8期,第68-78頁。
15.鄭錦銅、江銘鴻 (2013). 「剛性基礎上搖晃橋柱系統地震反應研究」,湖南大學學報(自然科學版),第40卷,第4期,第32-41頁。
16. Cheng Chin-Tung(2007).Energy dissipation in rocking bridge piers under free vibration tests,Earthquake Engineering and Structural Dynamics, v 36, n 4, p 503-518
17. Chin-Tung Cheng and Fu-Lin Chena (2013).Seismic performance of a rocking bridge pier substructure with frictional hinge dampers
18.Applied Technology Council. (1995). Guidelines and commentary for the seismic rehabilitation of buildings. Project ATC-33, Redwood City, CA, USA.
19.王健, 2006, “變曲率滑動隔震防制近斷層震波之實驗與分析” 高
雄第一科技大學營建工程系碩士論文,1 月
20.羅婷頤 (2010). 「RC構架內填高型磚牆面內側向加載試驗與分析」,國立成功大學建築學系碩士論文,1月。
20. Mitsumasa Midorikawa.(2006) .Shaking table tests on seismic response of steel braced frames with column uplift
21. Lu, L. Y., C. C. Lin, G. L. Lin (2013) “Experimental evaluation of supplemental viscous damping for a sliding isolation system under pulse-like base excitation.” Journal of Sound and Vibration, Vol. 332, No. 8, 1982-1999.
22. Lu, L. Y., C. C. Hsu (2013) “Experimental study of variable-frequency rocking bearings for seismic isolation.” Engineering Structures, Vol. 46, No. 1, 116-129
23. Jin Y. L., Wu T. X., and Li Z. G. (2012) “Shaking table tests and numerical analysis for vertical seismic response of quayside container cranes”, International Journal of Structural Stability and Dynamics, 12(5):1250034.
24. Politopoulos, Ioannis.(2010). Response of seismically isolated structures to rocking-type excitations
25. Lu, L. Y., T. Y. Lee, I. L. Yeh, H. Chang (2010) “Rocking bearings with variable frequency for near-fault seismic isolation (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 22, No. 3, 283-298.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top