( 您好!臺灣時間:2023/03/27 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Wei-Lun Chiou
論文名稱(外文):The application of Zn/ZSM-5 in adsorptive ozonation process for the treatment of emerging contaminants in wastewater
指導教授(外文):Jiunn-Jyi Lay
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新興污染物係指具「尚未受法規所規範」、「毒理學資料庫不足」、「對環境或人體具有潛在危害」或「傳統都市污水處理廠無法處理」的化學污染物質;藥物與個人保健用品(Pharmaceuticals and personal care products, PPCPs)係屬其中之一類,本研究選定PPCPs中磺胺類藥物進行探討,由於這類的藥物在傳統污水處理廠不易被去除,對環境和生物具潛在危害風險,故本研究針對在台灣水體檢出率高的磺胺甲基噁唑(Sulfamethoxazole, SMX),作為處理的目標污染物。
從等溫吸附試驗結果得知, ZSM-5添加觸媒改質成Zn/ZSM-5,會使吸附劑對SMX吸附量下降,使吸附效果降低,在SMX平衡濃度為5 mg/L的情況下,ZSM-5吸附量約為13 mg/g,而Zn/ZSM-5之吸附量則降低至約 2 mg/g,吸附量減少為ZSM-5的15%,顯示Zn之添加對ZSM-5的吸附有極大的影響。
利用連續式臭氧處理程序分解SMX的實驗結果表示,ZSM-5與改質後的Zn/ZSM-5對SMX去除率分別為23.8 %和26.5%,未填充ZSM-5之SMX分解率則僅為1-2%,顯示ZMS-5的填充能有效提高SMX的臭氧分解效率,但觸媒的添加對SMX去除率並無太大影響;在探討臭氧反應機制部分,發現當添加t-BuOH後,ZSM-5和Zn/ZSM-5兩者對SMX降解率由未添加的23.8 %和26.5%,下降為兩者皆趨近零,故結果顯示ZSM-5中臭氧分解SMX的主要反應機制為間接反應。
The pharmaceuticals and personal care products (PPCPs) refers to the products was used for the health of the person or livestock health or the enhancement of plants growth, and they are classified into one of the emerging contaminants. Because the most products of PPCPs could not be removed in the conventional sewage treatment plant easily, it has the potential to harm the environment. In this study, the sulfamethoxazole (SMX) was selected as the target pollutant, because it was usually detected in Taiwan’s rivers and lakes with higher concentration than others PPCPs.
The adsorptive ozonation process with ZSM-5 was proposed for the SMX treatment in this study. We considered that the target contaminants (SMX) and the ozone could be adsorbed into the pore of the molecular sieves pore of ZSM-5. According to SMX and ozone could be concentrated in the adsorptive phase, the ozonation rate of SMX could be increased. Further, in order to improve the mineralization of contaminants, ZnO as the catalyst was coated on the surface of ZSM-5 for producing the hydroxyl radicals (• OH).
The results of batch adsorption experiments show that the adsorption amount of SMX with ZSM-5 and Zn/ZSM-5 were 13 mg/g and 2 mg/L in the 5 mg/L equilibrium concentration, respectively. The adsorption amount of the Zn/ZSM-5 was reduced to 15% of the adsorption amount of the ZSM-5, because the pore in the ZMS-5 maybe blocked by the addition of Zn.
According to the SMX decomposition experiments, the decomposition rate of SMX by the traditional ozonation in the same condition was only 1-2 and the decomposition rate of SMX with ZSM-5 and Zn/ZSM-5 by the adsorption ozonation process were 23.8% and 26.5%, respectively. It was confirm the SMX decomposition rates were increased by the addition of ZSM-5 significantly, but there was no obvious effect by coating Zn on ZSM-5. On the other hand, the SMX decomposition rates were decreasing from around 23% to below 5 % by the t-BuOH addition, therefore, the mechanism of SMX decomposition by ozone in adsorptive phase was considered by the indirect reaction.
一、緒論 1
1-1 研究背景1
1-2 研究目的3
2-2磺胺甲基噁唑(Sulfamethoxazole, SMX)11
2-2-1磺胺甲基噁唑(Sulfamethoxazole, SMX)之特性14
2-3-1 ZSM-5型沸石18
2-3-2 吸附原理20
2-4 高級氧化程序(Advanced Oxidation Process, AOP) 21
2-4-1 臭氧基本性質21
2-4-3 催化劑選擇 26
3-1 研究架構圖27
3-3 實驗方法29
3-3-1 Zn/ZSM-5觸媒之製作 29
3-3-2 等溫吸附試驗30
3-3-3 連續流管柱試驗30
3-3-3-1 吸脫附試驗31
3-3-3-2 臭氧分解試驗31
3-3-4 臭氧產生機特性32
3-4 分析方法34
3-4-1 SMX濃度分析34
3-4-2 總有機碳(Total Organic Carbon, TOC)35
4-1 等溫吸附試驗 36
4-2 連續式吸脫附試驗38
4-3 連續式臭氧處理程序對SMX處理效率之探討43
4-3-1 臭氧分解試驗43
4-3-2 吸附式臭氧處理對SMX礦化程度之影響45
4-4 臭氧對分子篩吸附特性之影響47
4-5 臭氧處理程序之反應途徑51
五、結論 54
5-1 結論 54
5-2 建議 55
參考文獻 56
Adams, C. D., P. A. Scanlan, and N. D. Secrist . 1994. Oxidation and biodegradability enhancement of 1, 4-dioxane using hydrogen peroxide and ozone. Environmental Science & Technology. 28, pp. 1812-1818.
Argauer, R. J., and Landolt, G. R. 1972. Crystalline Zeolite ZSM-5 and Method of Preparing the Same. U.S. Pat. 3,702,889.
Ashton D., Hilton M., and Thomas K. 2004. Investigating the environmental transport of human pharmaceuticals to streams in the united kingdom. Science of the total environment. vol. 333,No.1, pp. 167-184.
Baran, W., Adamek, E., Ziemiańska, J., Sobczak, A. 2011. Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials, 196(0), 1-15.
Baronti, C., Curini, R., D''Ascenzo, G., Di, Corcia A., Gentili, A., and Samperi, R. 2000. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science and Technology, vol. 34,No.24, pp. 5059-5066.
Batt, A.L., Snow, D.D., Aga, D.S. 2006. Occurrence of sulfonamide antimicrobials in private water wells in Washington County. Idaho, USA. Chemosphere, 64(11), 1963-1971.
Beltran, F.J. 2004. Ozone Reaction Kinetics for Water and Wasterwater Systems. Lewis Publishers, USA.
Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H. and Mawhinney, D.B. 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent,municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment 366,pp. 772–783.
Cháfer-Pericás, C., Maquieira, Á., Puchades, R., Company, B., Miralles, J., Moreno, A. 2010. Multiresidue determination of antibiotics in aquaculture fish samples by HPLC–MS/MS. Aquaculture Research, 41(9), e217-e225.
Chang ,X., Meyer, M.T., Liu, X.,Zhao, Q., Chen,H., Chen, J.,Qiu ,Z., Yang,L., Cao, J. and Shu, W. 2010. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution 158 ,pp.1444–1450.
Chang, H., Hu, J., Asami, M. and Kunikane, S. 2008. Simultaneous analysis of 16 sulfonamide and trimethoprim antibiotics in environmental waters by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1190 ,pp. 390–393.
Chen, D., and Ray, A.K. 1999. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23(2–3), 143-157.
Cotton and Wilkinson. 1972. Advanced Inorganic Chemistry. 3rd edit, 809.
D’Ascenzo G., Gentili A., Mancini R., Mastropasqua R., Nazzari M. and Samperi R. 2003. Fate of estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 302:199-209.
Daughton C. G. and Ternes T. A. 1999. Pharmaceuticals and personal care products in the environment: Agents of subtle change?. Environmental Health Perspectives, pp. 907-938.
Dietze, J.E., Scribner, E.A., Meyer, M.T., Kolpin, D.W. 2005. Occurrence of antibiotics in water from 13 fish hatcheries, 2001–2003. International Journal of Environmental Analytical Chemistry, 85(15), 1141-1152.
Esplugas S., Bila D. M., Krause L. G. T., and Dezotti M. 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (edcs) and pharmaceuticals and personal care products (ppcps) in water effluents. Journal of Hazardous Materials, vol. 149,No.3, pp. 631-642.
Göbel, A., Thomsen, A., McArdell, C.S., Alder, A.C., Giber, W., Theis,N., Loffer, D. and Ternes, T.A. 2005. Extraction and determinationof sulfanamides, macrolides,and trimethoprim in sewage sludge. Journal of Chromatography A,Vol.1085,pp.170–189.
G.T. Kokotailo, S.C. Lawton, D.H. Olson, 1978. “Structure of synthetic zeolite ZSM-5”, Nature, 272, pp437-438.
García-Galán, M.J., Díaz-Cruz, M.S. and Barceló, D. 2011. Occurrence of sulfonamide residues along the Ebro river basin Removal in wastewater treatment plants and environmental impact assessment. Environment International 37,pp.462–473.
Glaze, W. H. 1987. Drinking-water treatment with ozone. Environmental Science & Technology, 21, pp. 224-230.
Herrmann, C., Fetting, F., Plog, C., 1988. Applied catalysis. 39, 213.
Hirsch, R., Ternes, T., Haberer, K. 1998. Occurrence of antibiotics in the aquatic environment. The Science of The Total Environment, pp. 109-118.
Hoigne, J., and H. Bader. 1976. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research, 10, pp. 377-386.
Huang, T.C. and D.H. Chen. 1993. Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation. J. Chin. I. Ch.E. (Taiwan), Vol 24, No.4, 207 .
Kärger,J.; Ruthven, D.M. Wiley. 1992. Diffusion in Zeolites and other Microporous Solids, J. Wiley & Sons INC, ISBN 0-471-50907-8.
Karthikeyan, K.G.and Meyer, M.T. 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment 361,pp.196– 207.
Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder, S.A. 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. water research 41, 1013-1021.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thureman, E.M., Zaugg, S.D., Barber, L.B. and Buxton, H.T. 2002. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants, in U.S. Streams, 1999-2000: A National Reconnaissance. Environmental Science and Technology 36, pp.1202-1211.
Langlais, B., Reckhow, D.A., Brink, D.R., F, A.W.W.R. 1991. Ozone in water treatment: application and engineering. CRC Press.
Le, T.X.a.M., Y. 2004. Residues of selected antibiotics in water and mud form shrimp pounds in mangrove areas in Viet Nam.
Lin, A.Y.-C., Yu, T.-H., and Lin, C.-F. 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 74(1), 131-141.
Li, B.and Zhang, T. 2011. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 83,pp. 1284–1289.
Lindberg, R.H.,Wennberg, P.,Johansson, M.I.,Tysklind, M. andAndersson, B.A.V. 2005. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden.Envirmetal Science And Technology 39(10),pp.3421-3429.
Luo, Y., Xu, L., Rysz, M., Wang, Y., Zhang, H., and Alvarez, P.J.J. 2011. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environmental Science &; Technology, 45(5), 1827-1833.
Masten, S. J., and S. H. R. Davies. 1994. The use of ozonization to degrade organic contaminants in wastewaters. Environmental Science & Technology, 28, pp. 180-185.
McBain, J.W. 1932. The Sorption of Gases and Vapors by Solids. Rultedge and Sons, London, Chapter 5.
Muruganandham M., Chen S. H., Wu J. J. 2007. Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition. Catalysis Communications 8(11):1609-1614.
Pan, X., Qiang, Z., Ben, W., Chen, M. 2011. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 84(5), 695-700.
Perez, S., Eichhorn, P. and Aga, D.S. 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim atdifferent stages of sewage treatment. Environmental Toxicology and Chemistry 24,pp. 1361-1367.
Prengle, H.W., Mauk, C.E. 1978. New technology: ozone/UV chemical oxidation wastewater process for metal complexes, organic species and disinfection. American Institute of Chemical Engineers, 74, 288.
Rice, R. G. 1996. Applications of ozone for industrial wastewater treatment—a review”, Ozone: science and engineering, 18, pp. 477-515.
Rosenfeldt EJ, Linden KG. 2004. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology, 38:5476–5486 .
Scholar, E.M., Pratt, W.B. 2000. The Antimicrobial Drugs second ed. University Press Oxford Oxford, UK.
Samuelsen, O.B., Torsvik, V., Ervik, A. 1992. Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Science of The Total Environment, 114(0), 25-36.
Sharma, V.K. 2008. Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(VI): Kinetics assessment. Chemosphere, 73(9), 1379-1386.
Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., Oh, J.-E. 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179-186.
Sonntag, C., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann, and H. P. Schuchmann. 1997 . The fate of peroxyl radicals in aqueous solution. Water Science and Technology, 35, pp. 9-15.
Staehelin, J., R. Buhler, and J. Hoigne. 1984. Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates”, The Journal of Physical Chemistry, 88, pp. 5999-6004.
Stumpf, M., Ternes, T., Wilken R.D. 1999. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro. Brazil, Vol. 225, pp 135-141.
Taguchi, A. and Schuth, F. 2005. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, Vol. 77, 1-45.
Ternes T. A., Stumpf M., Mueller J., Haberer K., Wilken R. D., and Servos M. 1999. Behavior and occurrence of estrogens in municipal sewage treatment plants — i. Investigations in germany, canada and brazil. Science of the Total Environment, vol. 225,No.1–2, pp. 81-90.
Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145-167.
Thmtam, F., Mercier, F., Bot, B. L., Eurin, J., Dinh, Q. T., Clemem, M., Chevereuil, M. 2008. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions,” Science of The Total Environment, Vol. 393, No. 1, pp. 84-95.
Thuy, H., Nga, L., Loan, T. 2011. Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming. Environmental Science and Pollution Research, 18(6), 835-841.
Vicente, D., Pérez-Trallero, E. 2010. Tetraciclinas, sulfamidas y metronidazol. Enfermedades Infecciosas y Microbiología Clínica, 28, 122-130.
Vieno, N.M., Harkki, H., Tuhkanen, T., Kronberg, L. 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environmental Science Technology 41, 5077-5084.
W.C. Li. 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil Environmental Pollution 187(2014) 193-201.
Wei, R., Ge, F., Huang, S., Chen, M., Wang, R. 2011. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414.
WHO. 2012. Pharmaceuticals in drinking-water.
Xu, W.H.,Zhang, G.,Zou, S.C.,Li, X.D.,and Liu, Y.C. 2007. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography- electrospray ionization tandem mass spectrometry. Environmental Pollution 145,pp. 672-679.
Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z., Li, J. 2007. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41(19), 4526-4534.
Yang, S.and Carlson, K. 2004. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique. Water Research 38 pp.3155–3166.
Zhu, J., D.D., Snow, D. A., Cassada, S. J., Monson, R. F., Spalding. 2001. Analysis of oxytetracycline,tetracycline and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, Vol. 928, pp. 177-186.
賈東明,王信斌,陳信志,周秀冠,2007,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,藥物食品檢驗局調查研究年報. 25 : 261-266,2007
周海東,王曉琳,高密軍,黃霞,2009,北京污水廠進、出水中內分泌干擾物的分布,中國給水排水,第23卷,第 75-78頁
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
第一頁 上一頁 下一頁 最後一頁 top