跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/25 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸羽柔
研究生(外文):Yu-jou Lu
論文名稱:沉浸與焦慮對行動購物意圖之影響
論文名稱(外文):The impact of flow and anxiety on mobile shopping intention
指導教授:徐村和徐村和引用關係
指導教授(外文):Tsuen-ho Hsu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:行銷與流通管理系連鎖加盟管理碩士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:沉浸理論焦慮行動購物科技接受模型
外文關鍵詞:AnxietyTechnology Acceptance ModelFlow TheoryMobile Shopping
相關次數:
  • 被引用被引用:1
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去使用科技接受模型探討行動購物的研究很多,但聚焦在沉浸理論的研究很少。許多研究探討有用性、易用性與沉浸之間的關係,與沉浸和態度之間的關係,但都是分開探討,故本研究將其整合,將沉浸作為行動購物有用性、行動購物易用性與行動購物態度之中介變數。過去將焦慮作為干擾變數的研究也很少,因此納入焦慮作為干擾變數,探討焦慮是否會干擾行動購物有用性對行動購物意圖的影響。
本研究以問卷作為調查工具,在Facebook塗鴉牆及PTT張貼網址進行問卷的收集,共回收323份有效問卷。研究發現包括:(1)行動購物的有用性與易用性皆對沉浸有正向影響。(2)行動購物有用性對行動購物意圖有正向影響。(3)沉浸對行動購物態度有正向影響。(4)行動購物態度對行動購物意圖有正向影響。(5)焦慮會顯著干擾行動購物有用性與行動購物意圖之間的關係。
研究發現提供了沉浸在行動購物方面,與焦慮作為行動購物有用性與行動購物意圖間干擾變數的研究參考。在實務上幫助企業了解沉浸的前因及後果,有助於企業在未來擬定行動購物的有效行銷策略。本研究最後根據研究結果討論行銷管理涵意,並提供未來研究方向。
Most extant mobile shopping studies use the TAM model, but little studies have been a focus on the flow theory. Furthermore, numerous previous studies have also presented a relationship between perceived usefulness, perceived ease of use and flow, and between flow and attitude. However, studies have been discussion separated. Hence, this study integrated them and explore that flow plays the role of mediator in that relationship. Moreover, anxiety plays the role of moderator is relatively neglected. Therefore, we analyze the moderating effect of the anxiety on mobile shopping intention.
This study used questionnaire as survey instrument to conduct our empirical study. The empirical survey involved a sample of 323 consumers who had experienced various kinds of mobile shopping service. Statistical analyses of the study showed that: (1) Both perceived usefulness and perceived ease of use were significantly related to flow. (2) Perceived usefulness was significantly related to mobile shopping intention. (3) Flow was significantly related to attitude. (4) Attitude was significantly related to mobile shopping intention. (5) Anxiety plays a moderating role on the relationship between perceived usefulness and mobile shopping intention.
These findings can provide insight into research on the flow in the perceived usefulness and on the relationship between perceived usefulness and mobile shopping intention is moderated by anxiety. In practice, they can help companies to formulating effective marketing strategies in the future. Theoretical implications and suggestions for future research are also provided.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究目的 5
第四節 研究流程 6
第五節 研究計畫之重要性 7
第貳章 文獻探討 8
第一節 沉浸理論(Flow theory) 8
第二節 科技接受模型 17
第三節 態度與行動購物意圖 24
第四節 焦慮 30
第參章 研究方法 34
第一節 研究假設 34
第二節 研究架構 35
第三節 變數操作型定義與衡量 36
第四節 資料分析方法 43
第五節 研究設計與前測執行 46
第肆章 資料分析與討論 50
第一節 受測者描述性統計分析 50
第二節 資料之信度與效度分析 60
第三節 本研究之結構模式分析 69
第四節 沉浸之中介效果驗證 74
第五節 焦慮之干擾效果驗證 77
第伍章 結論與建議 79
第一節 結論 80
第二節 研究發現 81
第三節 行銷管理意涵 83
第四節 研究限制與未來研究方向 85
參考文獻 87
附錄 研究問卷 95
1.Ahn, T., Ryu, S., & Han, I. (2005). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405-420.
2.Ahn, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275.
3.Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. 11-39. Springer Berlin Heidelberg.
4.Angelides, M. C. (1997). Implementing the Internet for business: a global marketing opportunity. International Journal of Information Management, 17(6), 405-419.
5.Arnould, E. J., & Thompson, C. J. (2005). Consumer culture theory (CCT): Twenty years of research. Journal of Consumer Research, 31(4), 868-882.
6.Bahli, B., & Benslimane, Y. (2004). An exploration of wireless computing risks: Development of a risk taxonomy. Information Management & Computer Security, 12(3), 245-254.
7.Bandura, A. (1986). Social foundations of thought and action: A social-cognitive view.
8.Baronas, R., & Louis, M. (1988). Restoring a sense of control during implementations. MIS Quarterly, 12, 111–123.
9.Bauer, H. H., Barnes, S. J., Reichardt, T., & Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of Electronic Commerce Research, 6(3), 181-192.
10.Blackwell, R. D., Miniard, P. W. and Engel, J. F. (2001). Consumer Behavior, 10th eds., New York: The Dryden Press.
11.Bruner, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58(5), 553-558..
12.Burke, R. R. (2002). Technology and the customer interface: what consumers want in the physical and virtual store. Journal of the Academy of Marketing Science, 30(4), 411-432.
13.Cao, M., Zhang, Q., & Seydel, J. (2005). B2C e-commerce web site quality: an empirical examination. Industrial Management & Data Systems, 105(5), 645 - 661.
14.Clarke, I. (2001). Emerging value propositions for m-commerce. Journal of Business Strategies, 18(2), 133-148.
15.Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
16.Compeau, D., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS Quarterly, 23(2), 145-158.
17.Csikszentmihalyi, M., Larson, R., & Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of Youth and Adolescence, 6(3), 281-294.
18.Dabholkar, P. A., & Sheng, X. (2009). The role of perceived control and gender in consumer reactions to download delays. Journal of Business Research,62(7), 756-760.
19.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
20.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
21.Deng, Z., Lu, Y., Wang, B., & Zhang, J. (2010). An empirical analysis of factors influencing users'' adoption and use of mobile services in China. International Journal of Mobile Communications, 8(5), 561-585.
22.Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of B2C channel satisfaction and preference: validating e-commerce metrics. Information Systems Research, 13(3), 316-333.
23.Dickinger, A., Kleijnen, M., (2008). Coupons going wireless: determinants of consumer intention to redeem mobile coupons. Journal of Interactive Marketing 22(3), 23–39.
24.Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers'' product evaluations. Journal of Marketing Research, 307-319.
25.Donthu, N. (2001). Does your Web site measure up? Marketing Management, 10(4), 29–32.
26.Eagly, A. H., & Chaiken, S. (1993). The Psychology of Attitudes. Harcourt Brace Jovanovich College Publishers.
27.Etzel, M. J., Walker, B. J., & Stanton, W. J. (2001). Marketing management. McGraw-Hill/Irwin, Boston, MA.
28.Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and behavior: An Introduction to Theory and Research.
29.Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90.
30.Gordon, B., & Anand, K. (2000). Web commercials and advertising hierarchy-of-effects. Journal of Advertising Research, 40(1).
31.Grewal, D., Iyer, G.R., & Levy, M. (2004). Internet retailing: enablers, limiters and market consequences, Journal of Business Research, 57(7), 703-713
32.Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: A test of alternative models. Information Systems Journal, 19(4), 369–390.
33.Hancock, G. R., & Nevitt, J. (1999). Bootstrapping and the identification of exogenous latent variables within structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 6(4), 394-399.
34.Hausman, A. V., & Siekpe, J. S. (2009). The effect of web interface features on consumer online purchase intentions. Journal of Business Research, 62(1), 5–13.
35.Heinssen Jr, R. K., Glass, C. R., & Knight, L. A. (1987). Assessing computer anxiety: Development and validation of the computer anxiety rating scale. Computers in Human Behavior, 3(1), 49-59.
36.Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. The Journal of Marketing, 50-68.
37.Hourahine, B., & Howard, M. (2004). Money on the move: Opportunities for financial service providers in the ‘third space’. Journal of Financial Services Marketing, 9(1), 57-67.
38.Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868.
39.Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). Flow experience and internet shopping behavior: Investigating the moderating effect of consumer characteristics. Systems Research and Behavioral Science, 29(3), 317-332.
40.Hsu, C. L., Wang, C. F., & Lin, J. C. C. (2011). Investigating customer adoption behaviours in mobile financial services. International Journal of Mobile Communications, 9(5), 477-494.
41.Hsu, C. L., Wu, C. C., & Chen, M. C. (2013). An empirical analysis of the antecedents of e-satisfaction and e-loyalty: focusing on the role of flow and its antecedents. Information Systems and e-Business Management, 11(2), 287-311.
42.Huang, H. M., & Liaw, S. S. (2005). Exploring users'' attitudes and intentions toward the web as a survey tool. Computers in Human Behavior, 21(5), 729-743.
43.Huang, L. Y., Hsieh, Y. J., & Wu, Y. C. J. (2014). Gratifications and social network service usage: The mediating role of online experience. Information & Management, 51(6), 774-782.
44.Igbaria, M. and Iivari, J. (1995), The effects of self-efficacy on computer usage, International Journal of Management Science, 23(6), 587-605.
45.Kabadayi, S., & Gupta, R. (2005). Website loyalty: an empirical investigation of its antecedents. International Journal of Internet Marketing and Advertising,2(4), 321-345.
46.Kang, H., Hahn, M., Fortin, D. R., Hyun, Y. J., & Eom, Y. (2006). Effects of perceived behavioral control on the consumer usage intention of e‐coupons.Psychology & Marketing, 23(10), 841-864.
47.Kim, G. S., Park, S. B., & Oh, J. (2008). An examination of factors influencing consumer adoption of short message service (SMS). Psychology & Marketing,25(8), 769-786.
48.Kim, J., Spielmann, N., & McMillan, S. J. (2012). Experience effects on interactivity: Functions, processes, and perceptions. Journal of Business Research, 65(11), 1543-1550.
49.Kim, K., Kim, G. M., & Kil, E. S. (2009). MEASURING THE COMPATIBILITY FACTORS IN MOBILE ENTERTAINMENT SERVICE ADOPTION. Journal of Computer Information Systems, 50(1).
50.Kleijnen, M., De Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing, 83(1), 33-46..
51.Ko, E., Kim, E. Y., & Lee, E. K. (2009). Modeling consumer adoption of mobile shopping for fashion products in Korea. Psychology & Marketing, 26(7), 669-687.
52.Korzaan, M. L. (2003). Going with the flow: Predicting online purchase intentions. Journal of Computer Information Systems, 43(4), 25-31.
53.Kotler, P., Keller, K. L., Ancarani, F., & Costabile, M. (2014). Marketing Management 14/e. Pearson.
54.Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
55.Lee, J. H., Kim, J. H., & Hong, J. H. (2010). A comparison of adoption models for new mobile media services between high-and low-motive groups.International Journal of Mobile Communications, 8(5), 487-506.
56.Li, H., Kuo, C., & Rusell, M. G. (1999). The impact of perceived channel utilities, shopping orientations, and demographics on the consumer''s online buying behavior. Journal of Computer‐Mediated Communication, 5(2), 0-0.
57.Li, M., Dong, Z. Y., & Chen, X. (2012). Factors influencing consumption experience of mobile commerce: a study from experiential view. Internet Research, 22(2), 120-141.
58.Li, S., Glass, R., & Records, H. (2008). The Influence of Gender on New Technology Adoption and Use–Mobile Commerce. Journal of Internet Commerce, 7(2), 270-289.
59.Li, Y. M., & Yeh, Y. S. (2010). Increasing trust in mobile commerce through design aesthetics. Computers in Human Behavior, 26(4), 673-684.
60.Lin, C.-P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interactive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85–108.
61.Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management,20(3), 197-208.
62.Lin, J., Lu, Y., Wang, B., & Wu, S. (2011). Initial trust and adoption of mobile brokerage service. International Journal of Mobile Communications, 9(2), 124-143.
63.Liu, Y., & Li, H. (2011). Exploring the impact of use context on mobile hedonic services adoption: An empirical study on mobile gaming in China. Computers in Human Behavior, 27(2), 890-898.
64.Lu, H. P., & Su, P. Y. J. (2009). Factors affecting purchase intention on mobile shopping web sites. Internet Research, 19(4), 442-458.
65.Mathwick, C., & Rigdon, E. (2004). Play, flow, and the online search experience. Journal of Consumer Research, 31(2), 324-332.
66.McFarland, D. J., & Hamilton, D. (2006). Adding contextual specificity to the technology acceptance model. Computers in Human Behavior, 22(3), 427-447.
67.Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899-906.
68.Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.
69.Morwitz, V. G., & Schmittlein, D. (1992). Using segmentation to improve sales forecasts based on purchase intent: Which" intenders" actually buy?. Journal of Marketing Rese
70.Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22-42.
71. Nusair, K., & Parsa, H. G. (2011). Introducing flow theory to explain the interactive online shopping experience in a travel context. International Journal of Hospitality & Tourism Administration, 12(1), 1-20.
72.Nysveen, H., Pedersen, P. E., & Thorbjrnsen, H. (2005). Intentions to use mobile services: antecedents and cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346.
73.Oinas-Kukkonen, H. (2000). Balancing the vendor and consumer requirements for electronic shopping systems. Information Technology and Management,1(1-2), 73-84.
74.Pappas, I. O., Pateli, A. G., Giannakos, M. N., & Chrissikopoulos, V. (2014). Moderating effects of online shopping experience on customer satisfaction and repurchase intentions. International Journal of Retail & Distribution Management, 42(3), 187-204.
75.Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
76.Qi, J., Li, L., Li, Y., & Shu, H. (2009). An extension of technology acceptance model: Analysis of the adoption of mobile data services in China. Systems Research and Behavioral Science, 26(3), 391-407.
77.Rao Hill, S., & Troshani, I. (2010). Factors influencing the adoption of personalisation mobile services: empirical evidence from young Australians.International Journal of Mobile Communications, 8(2), 150-168.
78.Scansaroli, J. A. (1997). Interactive retailing, the threat, the opportunity: Imagine this; Wired Kingdom. Chain Store Age, 73(1), 2A4A.
79.Schiffman, L. G., & Kanuk, L. L. (2000). Consumer Behavior, 7th.
80.Scott, C. R., & Rockwell, S. C. (1997). The effect of communication, writing, and technology apprehension on likelihood to use new communication technologies. Communication Education, 46(1), 44-62.
81.Scott, M. J., & Stradling, S. G. (2006). Counselling for post-traumatic stress disorder. Sage.
82.Smith, D. N., & Sivakumar, K. (2004). Flow and internet shopping behavior: a conceptual model and research propositions. Journal of Business Research,57(10), 1199-1208.
83.Smith, R. E. (1972). Social anxiety as a moderator variable in the attitude similarity-attraction relationship. Journal of Experimental Research in Personality, l 6(1), 22-28.
84.Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management science, 42(1), 85-92.
85.Szymanski, D. M., & Hise, R. T. (2000). E-satisfaction: an initial examination. Journal of Retailing, 76(3), 309-322.
86.Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: a test of competing models. Information systems research, 6(2), 144-176.
87.Trevino, L. K., & Webster, J. (1992). Flow in computer-mediated communication electronic mail and voice mail evaluation and impacts. Communication Research, 19(5), 539-573.
88.Vatanparast, R. (2010). Mobile Service Adoption Optimization: A Case Study. International Journal of Mobile Marketing, 5(2).
89.Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451.
90.Webster, J., Trevino, L. K., & Ryan, L. (1994). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426.
91.White, K. S., & Farrell, A. D. (2001). Structure of anxiety symptoms in urban children: Competing factor models of Revised Children''s Manifest Anxiety Scale. Journal of Consulting and Clinical Psychology, 69(2), 333.
92.Williams, J. M. G., Watts, F. N., MacLeod, C., & Mathews, A. (1988).Cognitive Psychology and Emotional Disorders. John Wiley & Sons.
93.Yang, H. C. (2013). Bon Appétit For Apps: Young American Consumers''acceptance Of Mobile Applications. Journal of Computer Information Systems, 53(3).
94.Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262-270.
95.Yang, K. (2010). The effects of technology self-efficacy and innovativeness on consumer mobile data service adoption between American and Korean consumers. Journal of International Consumer Marketing, 22(2), 117-127.
96.Yang, K. (2012). Consumer technology traits in determining mobile shopping adoption: An application of the extended theory of planned behavior. Journal of Retailing and Consumer Services, 19(5), 484-491.
97.Yang, K., & Forney, J. C. (2013). The Moderating Role of Consumer Technology Anxiety in Mobile Shopping Adoption: Differential Effects of Facilitating Conditions and Social Influences. Journal of Electronic Commerce Research, 14(4).
98.Yang, K., & Kim, H. Y. (2012). Mobile shopping motivation: an application of multiple discriminant analysis. International Journal of Retail & Distribution Management, 40(10), 778-789.
99.Yang, Z., Peterson, R. T., & Huang, L. (2001). Taking the pulse of Internet pharmacies. Marketing Health Services, 21(2), 5-10.
100.Yeo, J., & Huang, W. (2003). Mobile e-commerce outlook. International Journal of Information Technology & Decision Making, 2(02), 313-332.
101.Zaman, M., Anandarajan, M., & Dai, Q. (2010). Experiencing flow with instant messaging and its facilitating role on creative behaviors. Computers in Human Behavior, 26(5), 1009-1018..
102.Zhao, X., Mattila, A. S., & Eva Tao, L. S. (2008). The role of post-training self-efficacy in customers'' use of self service technologies. International Journal of Service Industry Management, 19(4), 492-505.
103.Zwass, V. (1996). Electronic commerce: structures and issues. International Journal of Electronic Commerce, 3-23.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊