跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾均孟
研究生(外文):Chun Meng Chung
論文名稱:以金奈米粒子選擇性萃取掌性硫醇類藥物結合毛細管電泳進行分析
論文名稱(外文):Selective extraction of chiral thiol drugs using gold nanoparticles followed by capillary electrophoresis
指導教授:謝明穆
指導教授(外文):Ming Mu Hsieh
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:D-Penicillamine(D-PA)DL-Tiopronin(DL-Tio)Tween 20-AuNPs毛細管電泳(CE)FMOC
外文關鍵詞:D-Penicillamine (D-PA)DL-Tiopronin (DL-Tio)Tween 20-AuNPsCapillary Electrophoresis (CE)fluorenylmethyloxycarbonyl (FMOC)Dithiothreitol (DTT)Polyethylene Oxide (PEO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

D-Penicillamine(D-PA)與 DL-Tiopronin(DL-Tio)藥物已經廣泛用於治療多種疾病,如:威爾森氏症(Wilson’s disease)、重金屬疾病(鉛、砷、汞和鋅等)、胱氨酸尿症、抗纖維化的硬皮病和類風溼關節炎等。在本研究中,我們使用Tween 20金奈米粒子(Tween 20-AuNPs)萃取技術可在複雜的基質下選擇性濃縮胺基硫醇類的特性,再結合聚合物堆積法搭配毛細管電泳成功偵測藥錠與尿液中這四種分析物。最佳化條件為,10 mL 的樣品水溶液,使用 200 µL 200倍 Tween 20-AuNPs 為萃取吸附材料、20 µL Dithiothreitol(DTT)的取代劑,靜置反應後離心取出上清液,經過衍生化試劑 fluorenylmethyloxycarbonyl 衍生反應 2分鐘後即可上機偵測,其分離最佳方法是緩衝溶液中添加 25 mM β-cyclodextrin 和 0.5 %v/v polyethylene oxide(PEO),使用此方法可以得到最低偵測極限為 1.8~4.0 nM 與好的線性範圍 7.5~3000 nM (R2 > 0.9961)。此結果顯示,本研究方法是便宜、快速、方便用於分析物的偵測。

Abstract

D-Penicillamine(D-PA) and DL-Tiopronin(DL-Tio) are thiol drugs widely used for treating many diseases. In this paper, a simple method for the detecting of DL-Tio and D-PA is described. Tween 20-capped gold nanoparticles (Tween 20-AuNPs) were used as sCctive probes for chiral thiol drugs from an aqueous solution. Tween 20-AuNPs selectively extracted and enriched the thiol drugs from a complicated matrix, because the Tween 20 capped layer effectively inhibited nonspecific adsorption. A 10.0 mL chiral thiol drug solution was extracted using 200× AuNPs (200 µL), and the extracted aminothiols derivatized with fluorenylmethyloxycarbonyl at pH 10.0 were detected using capillary electrophoresis (CE) with UV detection. After extracting and centrifuging, dithiothreitol was used for detaching the chiral thiol drugs from the AuNPs surface. On-line concentration and separation of the detached chiral thiol drugs were performed using 25 mM β-cyclodextrin and 0.5%(v/v) polyethylene oxide as an additive in CE. Under optimal extraction conditions, the limits of detection at a signal-to-noise ratio of 3 for four chiral thiol drugs ranged 1.8–4.0 nM, and satisfactory linearity was obtained at 7.5–3000 nM (R2 > 0.996). These results suggest that the present method is inexpensive, rapid, easy, accurate.

摘要..............................................................................................................................Ⅰ
Abstract........................................................................................................................Ⅱ
目錄..............................................................................................................................Ⅲ
圖目..............................................................................................................................Ⅴ
表目..............................................................................................................................Ⅵ
壹、緒論........................................................................................................................1
一、威爾森氏症(Wilson’s Disease) .........................................................................1
二、分析物簡介........................................................................................................2
(1) DL- Penicillamine (DL-PA) ............................................................................3
(2) DL-Tiopronin (DL-Tio) ...................................................................................3
三、藥物分析方法....................................................................................................5
四、毛細管電泳簡介................................................................................................9
五、毛細管電泳分離模式........................................................................................12
5.1毛細管區帶電泳 (CZE)..............................................................................12
5.2微胞電動層析法(MEKC) ...........................................................................13
六、樣品線上濃縮堆積法 (sample stacking) .......................................................14
6.1 等速電泳法 (Isotachophoresis, ITP) ........................................................15
6.2 場放大堆積法 (Field-Amplified Sample Stacking, FASS) ......................16
6.3 大體積樣品堆積法 (Large Volume Sample Stacking, LVSS) .................18
6.4 掃集堆積法 (Sweeping stacking) .............................................................19
6.5 聚合物堆積法 (polymer stacking) ............................................................20
七、環糊精( cyclodextrin ) 簡介............................................................................22
八、萃取方法...........................................................................................................24
8.1 液-液萃取 ( Liquid-liquid extraction, LLE ) ..............................................25
8.2 固相萃取( Solid-phase extraction, SPE ) ....................................................25
8.3 固相微萃取( Solid-phase microextraction, SPME ) ....................................26
8.4 液相微萃取( Liquid-phase microextraction, LPME ) .................................27
8.5 磁固相微萃取法 ( Magnetic solid-phase extraction, MSPE)......................28
九、金奈米粒子 ( gold nanoparticle ) 介紹與萃取…………………………….28
9.1 奈米介紹…………………………………………………………………...28
9.2 金奈米粒子置備與表面修飾……………………………………………...29
十、研究動機與目的………………………………………………………………31
貳、實驗……………………………………………………………………………..32
一、儀器設備……………………………………………………………………..32
二、實驗藥品……………………………………………………………………..33
三、實驗方法……………………………………………………………………..35
3.1 CE-UV 偵測系統………………………………………………………….35
3.2 儲存溶液配置……………………………………………………………...36
3.3 緩衝溶液配置……………………………………………………………...37
3.4 合成金奈米粒子 ( AuNPs)………………………………………………..38
3.5 金奈米粒子萃取過程 …………………………………………………….38
參、結果與討論………………………………………………………………………41
一、目的…..………………………………………………………………………41
二、毛細管電泳分離條件…………………………………………………..……41
2.1 緩衝溶液 pH 值的探討…………………………………………..………42
2.2 環糊精的選擇與探討…………………………………………..………….45
2.3 高分子聚合物環氧乙烷(ethylene oxide, PEO)對分析物分離探討……...50
2.4 含 PEO 的緩衝溶液(Tris Borate, TB)濃度探討…………..……..……....52
三、毛細管電泳樣品線上濃縮條件…………..……..…………………………..55
3.1注入時間探討………………………………………………………………55
四、Tween 20-AuNPs 萃取條件探討……………………………………………58
4.1Tween 20-AuNPs濃度……………………………………………………...58
4.2取代劑DTT濃度探討……………………………………………………..60
4.3樣品體積探討………………………………………………………………62
五、目標分析物的定量、靈敏度、精密度……………………………………..64
5.1標準品直接分析……………………………………………………………64
5.2線上濃縮技術………………………………………………………………65
5.3樣品經過奈米粒子萃取後分析…………………………………………....65
5.4結合奈米粒子萃取與線上濃縮…………………………………………....66
肆、結論……………………………………………………………………………..75
參考文獻……………………………………………………………………………..76






圖目錄
圖1.電滲流驅動與壓力區動支層流差異 11
圖2.毛細管區帶電泳圖 12
圖3.毛細管微胞電動層析法 ( MEKC ) 示意圖 14
圖4.等速電泳法示意圖 16
圖5.場放大樣品堆積法示意圖 17
圖6.大體積樣品堆積法示意圖 18
圖7.大體積樣品堆積法示意圖 19
圖8.聚合物堆積法示意圖 21
圖9. 環糊精示意圖 23
圖10.毛細管電泳示意圖 36
圖11.金奈米粒子萃取過程示意圖 40
圖 12. 緩衝溶液 pH 值探討 44
圖 13. 緩衝溶液添加不同濃度 β-CD 對分析物解析度結果示意圖 47
圖 14. 緩衝溶液添加不同環糊精對分析物分離結果示意圖 48
圖 15. 緩衝溶液添加不同環糊精對分析物分離結果示意圖 49
圖 16. 緩衝溶液添加PEO對分析物分離結果示意圖 51
圖 17. 緩衝溶液濃度對分析物分離結果示意圖 53
圖 18. 線上濃縮堆積法-秒數對訊號面積 57
圖 19. 金奈米粒子萃取濃度對分析物結果示意圖 59
圖 20. DTT濃度對分析物結果示意圖 61
圖 21. 樣品體積對分析物結果示意圖 63
圖22.金奈米粒子萃取結合聚合物堆積法 71
圖23樣品經過Tween 20-AuNPs萃取結合聚合物堆積法後最低濃度 73


表目錄
表 1.分析物結構 ………………………………………………………………..…...4
表2. DL-PenA和DL-Tio分析物應用於不同前處裡、衍生化和偵測儀器之分析…..8
表3.緩衝溶液 Tris Borate 最佳化條件 ……………………..……………………53
表4.標準品直接分析 ………………………………………………………………67
表5.標準品使用聚合物堆積法進行濃縮 …………………………………………68
表6.標準品使用Tween 20-AuNPs 萃取 ………………………………………….69
表7.標準品使用Tween 20-AuNPs 萃取結合聚合物堆積法……………………. 70
表8.次與次的標準品回收率與相對標準偏差(n=3)………………………………73
表9.天與天標準品回收率與相對標準偏差(n=3) ………………………………...74

參考文獻

1. Walshe, J. M., The story of penicillamine: A difficult birth. Movement Disorders 2003, 18 (8), 853-859.
2. p 中華民國94年3月第四期罕見疾病及藥物法.
3. Yang, X.; Yuan, H.; Wang, C.; Su, X.; Hu, L.; Xiao, D., Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. Journal of pharmaceutical and biomedical analysis 2007, 45 (2), 362-6.
4. Zinellu, A.; Carru, C.; Sotgia, S.; Deiana, L., Plasma D-penicillamine redox state evaluation by capillary electrophoresis with laser-induced fluorescence. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2004, 803 (2), 299-304.
5. Walshe, J. M., Penicillamine, a new oral therapy for Wilson's disease. The American Journal of Medicine 1956, 21 (4), 487-495.
6. Sarkar, B., Treatment of Wilson and Menkes Diseases. Chemical Reviews 1999, 99 (9), 2535-2544.
7. Jaffe, I. A., Penicillamine: An anti-rheumatoid drug. The American Journal of Medicine 75 (6), 63-68.
8. Chong, C. R.; Auld, D. S., Inhibition of Carboxypeptidase A by d-Penicillamine:  Mechanism and Implications for Drug Design†. Biochemistry 2000, 39 (25), 7580-7588.
9. Klein, D.; Lichtmannegger, J.; Heinzmann, U.; Summer, K. H., Dissolution of copper-rich granules in hepatic lysosomes by D-penicillamine prevents the development of fulminant hepatitis in Long-Evans cinnamon rats. Journal of Hepatology 2000, 32 (2), 193-201.
10. Orosz, F.; Wágner, G.; Liliom, K.; Kovács, J.; Baróti, K.; Horányi, M.; Farkas, T.; Hollán, S.; Ovádi, J., Enhanced association of mutant triosephosphate isomerase to red cell membranes and to brain microtubules. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (3), 1026-1031.
11. Joyce, D. A.; Day, R. O., D-penicillamine and D-penicillamine-protein disulphide in plasma and synovial fluid of patients with rheumatoid arthritis. British Journal of Clinical Pharmacology 1990, 30 (4), 511-517.
12. Joyce, D. A., d-penicillamine pharmacokinetics and pharmacodynamics in man. Pharmacology & Therapeutics 1989, 42 (3), 405-427.
13. Cervantes, G.; Moreno, V.; Molins, E.; Quirós, M., Pd(II) and Pt(II) D-penicillamine complexes. Crystal structure of a tridentate D-penicillamine cluster of Pd(II). Polyhedron 1998, 17 (19), 3343-3350.
14. Matsuura, K.; Murai, K.; Fukano, Y.; Takashina, H., Simultaneous determination of tiopronin and its metabolites in rat blood by LC-ESI-MS-MS using methyl acrylate for stabilization of thiol group. Journal of pharmaceutical and biomedical analysis 2000, 22 (1), 101-109.
15. Kuśmierek, K.; Bald, E., Simultaneous determination of tiopronin and d-penicillamine in human urine by liquid chromatography with ultraviolet detection. Analytica Chimica Acta 2007, 590 (1), 132-137.
16. Ma, J.; Gu, Y.; Chen, B.; Yao, S.; Chen, Z., High-performance liquid chromatography-electronspray ionization mass spectrometry for determination of tiopronin in human plasma. Journal of Chromatography A 2006, 1113 (1–2), 55-59.
17. Gotti, R.; Pomponio, R.; Andrisano, V.; Cavrini, V., Analytical study of penicillamine in pharmaceuticals by capillary zone electrophoresis. Journal of Chromatography A 1999, 844 (1–2), 361-369.
18. Lochman, P.; Adam, T.; Friedecký, D.; Hlídková, E.; Škopková, Z., High-throughput capillary electrophoretic method for determination of total aminothiols in plasma and urine. Electrophoresis 2003, 24 (7-8), 1200-1207.
19. Song, L.; Guo, Z.; Chen, Y., Separation and determination of chiral composition in penicillamine tablets by capillary electrophoresis in a broad pH range. Electrophoresis 2012, 33 (13), 2056-2063.
20. Jin, D.; Takehana, K.; Toyo'Oka, T., Chiral Separation of Racemic Thiols Based on Diastereomer Formation with a Fluorescent Chiral Tagging Reagent by Reversed-Phase Liquid Chromatography. Analytical Sciences 1997, 13 (1), 113-115.
21. Huang, T.-M.; Deng, C.-H.; Yu, Y.-J.; Zheng, X.-W.; Duan, G.-L., Determination of Tiopronin in Human Plasma by SPE then Reversed-Phase HPLC–UV. Chroma 2006, 63 (11-12), 551-556.
22. Huang, T.; Yang, B.; Yu, Y.; Zheng, X.; Duan, G., Reverse-phase high performance liquid chromatography for the determination of tiopronin in human plasma after derivatization with p-bromophenacyl bromide. Analytica Chimica Acta 2006, 565 (2), 178-182.
23. Wang, Y.-Q.; Ye, C.; Zhu, Z.-H.; Hu, Y.-Z., Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Analytica Chimica Acta 2008, 610 (1), 50-56.
24. Yuan, B.; Zhai, N.; Jiang, X.; Jin, Y.; Liu, C.; Li, C.; Xu, H., Quantitative determination of tiopronin in human plasma by LC-MS/MS without derivatization. Biomedical Chromatography 2012, 26 (7), 839-843.
25. Zhai, Y.; Zhuang, H.; Pei, M.; Zhang, G.; Li, H., The development of a conjugated polyelectrolytes derivative based fluorescence switch and its application in penicillamine detection. Journal of Molecular Liquids 2015, 202 (0), 153-157.
26. Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T., Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry 1984, 56 (1), 111-113.
27. Burgi, D. S.; Chien, R. L., Optimization in sample stacking for high-performance capillary electrophoresis. Analytical Chemistry 1991, 63 (18), 2042-2047.
28. Beckers, J. L.; Boček, P., Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations. Electrophoresis 2000, 21 (14), 2747-2767.
29. Shihabi, Z. K., Stacking in capillary zone electrophoresis. Journal of Chromatography A 2000, 902 (1), 107-117.
30. Chien, R. L.; Burgi, D. S., Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis. Analytical Chemistry 1992, 64 (9), 1046-1050.
31. Jung, B.; Bharadwaj, R.; Santiago, J. G., On-Chip Millionfold Sample Stacking Using Transient Isotachophoresis. Analytical Chemistry 2006, 78 (7), 2319-2327.
32. 林恩平. 以分散式液液微萃取搭配毛細管電泳偵測血清及尿液中的三種抗憂鬱藥物. 高雄師範大學.
33. Zhang, C.-X.; Thormann, W., Head-Column Field-Amplified Sample Stacking in Binary System Capillary Electrophoresis:  A Robust Approach Providing over 1000-Fold Sensitivity Enhancement. Analytical Chemistry 1996, 68 (15), 2523-2532.
34. Zhang, C.-X.; Thormann, W., Head-Column Field-Amplified Sample Stacking in Binary System Capillary Electrophoresis. 2. Optimization with a Preinjection Plug and Application to Micellar Electrokinetic Chromatography. Analytical Chemistry 1998, 70 (3), 540-548.
35. Kitagawa, F.; Otsuka, K., Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. Journal of Chromatography A 2014, 1335 (0), 43-60.
36. He, Y.; Lee, H. K., Large-Volume Sample Stacking in Acidic Buffer for Analysis of Small Organic and Inorganic Anions by Capillary Electrophoresis. Analytical Chemistry 1999, 71 (5), 995-1001.
37. Quirino, J. P.; Terabe, S., Large volume sample stacking of positively chargeable analytes in capillary zone electrophoresis without polarity switching: Use of low reversed electroosmotic flow induced by a cationic surfactant at acidic pH. Electrophoresis 2000, 21 (2), 355-359.
38. Quirino, J. P.; Terabe, S., Sample stacking of cationic and anionic analytes in capillary electrophoresis. Journal of Chromatography A 2000, 902 (1), 119-135.
39. Quirino, J. P.; Terabe, S.; Otsuka, K.; Vincent, J. B.; Vigh, G., Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated -cyclodextrin as pseudostationary phases in electrokinetic chromatography. Journal of Chromatography A 1999, 838 (1), 3-10.
40. Gong, M.; Wehmeyer, K. R.; Limbach, P. A.; Heineman, W. R., Unlimited-Volume Electrokinetic Stacking Injection in Sweeping Capillary Electrophoresis Using a Cationic Surfactant. Analytical Chemistry 2006, 78 (17), 6035-6042.
41. Tsai, I. L.; Sun, S.-W.; Liao, H.-W.; Lin, S.-C.; Kuo, C.-H., Rapid analysis of melamine in infant formula by sweeping-micellar electrokinetic chromatography. Journal of Chromatography A 2009, 1216 (47), 8296-8303.
42. Quirino, J. P.; Guidote Jr, A. M., Two-step stacking in capillary zone electrophoresis featuring sweeping and micelle to solvent stacking: II. Organic anions. Journal of Chromatography A 2011, 1218 (7), 1004-1010.
43. Zhang, H.; Zhou, L.; Chen, X., Improving sensitivity by large-volume sample stacking combined with sweeping without polarity switching by capillary electrophoresis coupled to photodiode array ultraviolet detection. Electrophoresis 2008, 29 (7), 1556-1564.
44. Quirino, J. P.; Terabe, S., Sweeping with an Enhanced Electric Field of Neutral Analyte Zones in Electrokinetic Chromatography. Journal of High Resolution Chromatography 1999, 22 (7), 367-372.
45. Shih, C.-M.; Lin, C.-H., Full-capillary sample stacking/sweeping-MEKC for the separation of naphthalene-2,3-dicarboxaldehyde-derivatized tryptophan and isoleucine. Electrophoresis 2005, 26 (18), 3495-3499.
46. Zhu, Z.-f.; Yan, N.; Zhou, X.; Zhou, L.; Chen, X., Simultaneous enrichment and separation of neutral and anionic analytes through combining large volume sample stacking with sweeping in CE. Journal of Separation Science 2009, 32 (20), 3481-3488.
47. Jong, Y.-J.; Ho, Y.-H.; Ko, W.-K.; Wu, S.-M., On-line stacking and sweeping capillary electrophoresis for detecting heroin metabolites in human urine. J Chromatogr A 2009, 1216 (44), 7570-7575.
48. Quirino, J. P.; Kim, J.-B.; Terabe, S., Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. Journal of Chromatography A 2002, 965 (1–2), 357-373.
49. Tseng, W.-L.; Chang, H.-T., On-Line Concentration and Separation of Proteins by Capillary Electrophoresis Using Polymer Solutions. Analytical Chemistry 2000, 72 (20), 4805-4811.
50. Basheer, C.; Wang, H.; Jayaraman, A.; Valiyaveettil, S.; Lee, H. K., Polymer-coated hollow fiber microextraction combined with on-column stacking in capillary electrophoresis. Journal of Chromatography A 2006, 1128 (1–2), 267-272.
51. Bessonova, E. A.; Kartsova, L. A.; Shmukov, A. U., Electrophoretic determination of albumin in urine using on-line concentration techniques. Journal of Chromatography A 2007, 1150 (1–2), 332-338.
52. Chun, M.-S.; Chung, D. S., Large volume sample stacking in capillary electrophoresis of weakly acidic compounds using coated capillaries at high pH. Analytica Chimica Acta 2003, 491 (2), 173-179.
53. Tseng, W.-L.; Chen, S.-M.; Hsu, C.-Y.; Hsieh, M.-M., On-line concentration and separation of indolamines, catecholamines, and metanephrines in capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride). Analytica Chimica Acta 2008, 613 (1), 108-115.
54. Yu, C.-J.; Tseng, W.-L., Online concentration and separation of basic proteins using a cationic polyelectrolyte in the presence of reversed electroosmotic flow. Electrophoresis 2006, 27 (18), 3569-3577.
55. Rizzi, A., Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 2001, 22 (15), 3079-3106.
56. Uekama, K.; Hirayama, F.; Irie, T., Cyclodextrin Drug Carrier Systems. Chemical Reviews 1998, 98 (5), 2045-2076.
57. Harada, A., Cyclodextrin-Based Molecular Machines†. Accounts of Chemical Research 2001, 34 (6), 456-464.
58. 余柏霖. 使用毛細管電泳同時偵測尿液中的五種掌性Phenothiazine類藥物. 高雄師範大學.
59. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990, 62 (19), 2145-2148.
60. Liu, H.; Dasgupta, P. K., Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Analytical Chemistry 1996, 68 (11), 1817-1821.
61. Pedersen-Bjergaard, S.; Rasmussen, K. E., Liquid−Liquid−Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Analytical Chemistry 1999, 71 (14), 2650-2656.
62. Šafařı́ková, M.; Šafařı́k, I., Magnetic solid-phase extraction. Journal of Magnetism and Magnetic Materials 1999, 194 (1–3), 108-112.
63. Li, M.-D.; Cheng, T.-L.; Tseng, W.-L., Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection. Electrophoresis 2009, 30 (2), 388-395.
64. 沈健智,開發新穎的奈米材料製造白色發光元件與分析生物及環境樣品中硫醇分子
65. Wang, A.; Wu, C.-J.; Chen, S.-H., Gold Nanoparticle-Assisted Protein Enrichment and Electroelution for Biological Samples Containing Low Protein ConcentrationA Prelude of Gel Electrophoresis. Journal of Proteome Research 2006, 5 (6), 1488-1492.
66. Chen, S.-J.; Chang, H.-T., Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Analytical Chemistry 2004, 76 (13), 3727-3734.
67. Shen, C.-C.; Tseng, W.-L.; Hsieh, M.-M., Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. Journal of Chromatography A 2009, 1216 (2), 288-293.
68. Lin, E.-P.; Lin, K.-C.; Chang, C.-W.; Hsieh, M.-M., On-line sample preconcentration by sweeping and poly(ethylene oxide)-mediated stacking for simultaneous analysis of nine pairs of amino acid enantiomers in capillary electrophoresis. Talanta 2013, 114 (0), 297-303.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top