(3.239.33.139) 您好!臺灣時間:2021/02/27 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳瑋翎
研究生(外文):Chen Wei-Ling
論文名稱:分析鄰苯二甲酸酯類物質對生態系統之影響
論文名稱(外文):Analysis of effects of phthalate esters on ecosystems
指導教授:田倩蓉田倩蓉引用關係李俊璋李俊璋引用關係
指導教授(外文):Tien Chien-JungLee Ching-Chang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:鄰苯二甲酸酯類微生態
外文關鍵詞:DEHPDBP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鄰苯二甲酸酯類物質(Phthalate esters, PAE)廣泛的運用在工業化學品上做為塑料加工的增塑劑,隨著塑料製品的生產、使用和廢棄,已造成其進入到環境中,而鄰苯二甲酸二(2-乙基己基)酯[di-(2-ethylhexyl)phthalate, DEHP]和鄰苯二甲酸二丁酯[Dibutyl phthalate, DBP]是最常在環境樣本中被檢測到的鄰苯二甲酸酯類,所以本研究特別針對這兩種PAE進行分析。微生態系統不包括自然生態系統之所有結構與其過程,簡化了自然生態系統,可減少其他環境因子的干擾且能控制實驗參數。所以,本研究藉由在實驗室中建構水生與陸生兩種微生態系統,以了解DEHP和DBP在進入環境後,於水體、土壤、底泥、生物體之分布及生物中的累積效應與毒性效應,並以底泥毒性試驗來分析其對低棲生物之影響。
結果顯示DEHP與DBP於水生微生態系統中主要分布在底泥(DEHP: 90.0~95.6%; DBP: 68.7~73.7%),其次是懸浮微粒(DEHP: 8.3~36.6%; DBP: 23.5~24.8%),接著是水體(DEHP: 0.7~1.6%; DBP: 2.2~2.9%)與朱文錦魚肉中(DEHP: 0.03~0.04%; DBP: 0.1~0.2%),這主要是由於DEHP與DBP具有高辛醇-水分配係數,所以在水與土壤或底泥兩種介質之間,更容易吸附於含有機質的的土壤或底泥中。而朱文錦對於DEHP與DBP之生物濃縮因子(Bioconcentration factor, BCF)分別為338.2~750.3與424.8~1155.4;而其對於DEHP與DBP之生物-底泥累積因子(Biota-sediment accumulation factor, BSAF)分別為0.07~0.27與0.38~1.22,可見朱文錦對於DBP比對DEHP具有較高之生物累積能力,但其BCF皆低於2000(具生物累積力之基準值),可見朱文錦對這兩種化合物之生物累積力並不高。整個實驗過程並無任何魚體死亡,主要是其所暴露之濃度皆遠低於文獻記載的半致死濃度(Median lethal concentration, LC50)。有暴露DEHP與DBP之魚血漿中卵黃前質濃度比未暴露高,且隨著暴露時間增加卵黃前質濃度有降低的情形。
陸生微生態系統中極大部分的DEHP與DBP分布於土壤中(DEHP: 97.7~99.7%; DBP: 98.1~99.9%),少部分分布於滲出水的懸浮顆粒(DEHP: 0.02~2.12%; DBP: 0.02~1.26%)、滲出水(DEHP: 0.03~0.24%; DBP: 0.08~0.6%)與蚯蚓(DEHP: 0~0.03%; DBP: 0~0.01%)中。而蚯蚓對於DEHP與DBP之生物累積因子(Bioaccumulation factor, BAF)分別為0.37&;1.11與0.17&;0.68,可見蚯蚓對這兩種化合物之生物累積力並不高。整個實驗過程並無任何蚯蚓死亡,主要是其所暴露之濃度皆遠低於文獻記載的半致死濃度。
底泥毒性試驗的研究中發現,在單一化合物試驗中DEHP對於絲蚯蚓之LC50為199.3 mg/kg dw,DBP對於絲蚯蚓之LC50為363.1 mg/kg dw。在DEHP與DBP混合試驗中,DEHP對於絲蚯蚓之LC50為59.7 mg/kg dw,可見在DBP的存在下會增加DEHP對絲蚯蚓的毒性作用。
總而言之,DEHP與DBP進入水生生態系統主要累積於底泥中,所以需注意其對底棲生物之影響,特別是其對水生生物之性荷爾蒙干擾作用;而其在陸生生態系統中主要累積在土壤中,而可能影響土壤中生物之生長繁殖。

Abstract
Phthalate esters (PAEs) were widely used as plasticizer of plastics processing. With production, use and wasting of plastics, these chemicals have been released into the environment. Di-(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) are commonly detected phthalate esters in the environment. Accordingly, these two chemicals were selected as target PAEs in this study. The microcosms simplify the natural ecosystems and do not include all the ecological structures and processes. They can decrease the interferences of other environmental factors and control experimental parameters. Thus, the objectives of this study were to (1) construct different aquatic and terrestrial microcosms to determine distribution of DEHP and DBP in water, sediment, soil and biota; (2) analyze bioaccumulation and toxicity of DEHP and BPA; (3) assess toxic effects of these two compounds on benthic organisms using the sediment toxicity testing.
The results showed that in the aquatic microcosms, DEHP and DBP were mainly distributed in sediments (DEHP: 90.0~95.6%; DBP: 68.7~73.7%), followed by suspended particles (DEHP: 8.3~36.6%; DBP: 23.5~24.8%), and the lowest was in water (DEHP: 0.7~1.6%; DBP: 2.2~2.9%) and fish muscle (DEHP: 0.03~0.04%; DBP: 0.1~0.2%). This is because that DEHP and DBP have high Kow and are easily adsorbed on soils and sediments with high organic contents. Bioconcentration factors (BCFs) of Carassius auratus for DEHP and DBP were 338.2~750.3 and 424.8~1155.4, respectively. Biota-sediment accumulation factors (BSAFs) of Carassius auratus for DEHP and DBP were 0.07~0.27 and 0.38~1.22, respectively. It indicated that Carassius auratus was able to accumulate more DBP than DEHP, but all BCFs were lower than 2000 (bioaccumulative baseline value). It showed that Carassius auratus did not have high ability to accumulate DEHP and DBP. No fish was dead during the experimental period due to much lower exposure dose of DEHP and DBP compared to recorded LC50 (Median lethal concentration). Concentrations of Vitellogenin in fish serum were higher in fish exposed to DEHP and DBP than those in fish without DEHP and DBP exposure. Vitellogenin concentrations in fish exposed to both compounds decreased with the exposure time.
In the terrestrial microcosms, most of DEHP and DBP were distributed in soils (DEHP: 97.7~99.7%; DBP: 98.1~99.9%) and only small amounts were found in leaching suspended particles (DEHP: 0.02~2.12%; DBP: 0.02~1.26%), leaching water (DEHP: 0.03~0.24%; DBP: 0.08~0.6%) and earthworms (DEHP: 0~0.03%; DBP: 0~0.01%). Bioaccumulation factors (BAFs) of earthworms for DEHP and DBP were 0.37&;1.11 and 0.17&;0.68, respectively, indicating low ability of accumulation of earthworm for these two compounds. No earthworm was dead during the experimental period due to much lower exposure dose of DEHP and DBP compared to recorded LC50.
The results of the sediment toxicity testing showed that in single compound test, LC50 of Monopylephorus limosus for DEHP was 199.3 mg/kg dw, and that for DBP was 363.1 mg/kg dw. In two-compound test, LC50 of Monopylephorus limosus for DEHP was 59.7 mg/kg dw. These results showed that the toxic effect of DEHP to Monopylephorus limosus increased under the presence of DBP.
To Sum up, DEHP and DBP mainly accumulated in sediments after releasing into the aquatic ecosystem and might cause toxic effects on benthic organisms, especially the sex hormone disrupling effect. When they were released into the terrestrial ecosystem, they mainly accumulated in soil and might affect the growth and reproduction of soil organisms.

目錄
摘要.............................................................................................................................Ⅰ
Abstract.......................................................................................................................Ⅲ
第一章 序論..............................................................................................................1
1.1研究動機......................................................................................................1
1.2研究目的.....................................................................................................3
第二章 文獻回顧.....................................................................................................4
2.1鄰苯二甲酸二(2-乙基己基)酯之基本特性、運作情形、毒性以及宿命與傳輸...........................................................................................4
2.1.1鄰苯二甲酸二(2-乙基己基)酯的基本特性與運作情形........4
2.1.2鄰苯二甲酸二(2-乙基己基)酯的毒性........................................7
2.1.3鄰苯二甲酸二(2-乙基己基)酯的宿命與傳.............................12
2.2鄰苯二甲酸二丁酯之基本特性、運作情形、毒性以及宿命與傳輸................................................................................................................18
2.2.1鄰苯二甲酸二丁酯的基本特性與運作情形..........................18
2.2.2鄰苯二甲酸二丁酯的毒性...........................................................20
2.2.3鄰苯二甲酸二丁酯的宿命與傳輸.............................................25
2.3微生態系統介紹.....................................................................................28
2.4卵黃前質介紹.........................................................................................29
2.5底泥毒性試驗介紹................................................................................30
第三章 材料與方法..............................................................................................33
3.1實驗架構...................................................................................................33
3.2實驗材料...................................................................................................35
3.2.1實驗藥品與儀器..........................................................................35
3.2.2試驗土壤........................................................................................36
3.2.3實驗生物馴養..............................................................................36
3.3實驗設置...................................................................................................36
3.3.1水生微生態系統..........................................................................36
3.3.2陸生微生態系統..........................................................................41
3.3.3底泥毒性試驗..............................................................................44
3.4樣本萃取及分析方法............................................................................46
3.4.1水體樣本萃取方法.....................................................................46
3.4.2底泥與泥土樣本萃取方法.......................................................47
3.4.3懸浮微粒樣本萃取方法............................................................48
3.4.4魚體樣本萃取方法....................................................................48
3.4.5蚯蚓樣本萃取方法.....................................................................50
3.4.6儀器分析方法..............................................................................50
3.5實驗品保/品管........................................................................................51
3.5.1檢量線製備...................................................................................51
3.5.2回收率分析..................................................................................52
3.5.3方法偵測極限建立.....................................................................52
3.6 卵黃前質分析方法. .............................................................................53
3.7生物累積能力分析................................................................................54
3.7.1 生物濃縮因子(BCF)計算方式................................................54
3.7.2 生物底泥累積因子(BSAF)計算方式....................................55
3.7.3 生物累積因子(BAF)計算方式...............................................55
第四章 結果與討論..............................................................................................56
4.1 DEHP、DBP與卵黃前質分析之品保品管......................................56
4.1.1 DEHP與DBP檢量線結果........................................................56
4.1.2 方法偵測極限..............................................................................56
4.1.3添加樣本回收率結果..................................................................57
4.2水生微生態系統結果............................................................................58
4.2.1環境介質中鄰苯二甲酸二(2-乙基己基)酯之濃度變化、分布比率與生物累積能力分析. ................................................58
4.2.2環境介質中鄰苯二甲酸二丁酯之濃度變化、分布比率與生物累積能力分析.....................................................................63
4.3陸生微生態系統結果...........................................................................68
4.3.1 環境介質中鄰苯二甲酸二(2-乙基己基)酯之濃度變化、分布比率與生物累積能力分析..............................................68
4.3.2環境介質中鄰苯二甲酸二丁酯之濃度變化、分布比率與生物累積能力分析.....................................................................72
4.4底泥毒性試驗..........................................................................................76
4.4.1鄰苯二甲酸二(2-乙基己基)酯對絲蚯蚓之毒性試驗...............76
4.4.2鄰苯二甲酸二丁酯對絲蚯蚓之毒性試驗....................................78
4.4.3混合DEHP與DBP對絲蚯蚓之毒性試驗...........................81第五章 結論與建議...... .......................................................................................85
5.1結論............................................................................................................85
5.2建議............................................................................................................87
參考文獻...................................................................................................................89


表目錄
表2-1鄰苯二甲酸二(2-乙基己基)酯之物化性質..................................5
表2-2台灣DEHP運作量申報資料........................................................7
表2-3國和國際組織對於DEHP的致癌性評估...................................11
表2-4加拿大環境部、美國、歐盟、聯合國環境署對生物累積性的評估標準...........................................................................................14
表2-5世界各國環境介質中DEHP之濃度範圍..................................17
表2-6 2008~2012年DBP之用量資料....................................................20
表2-7國際組織對於DBP的致癌性評估.............................................25
表2-8 DBP於各國環境流布調查結果..................................................27
表3-1水生微生態系統測定條件...........................................................39
表3-2陸生微生態系統測定條件............................................................42
表3-3底泥毒性試驗設定參數...............................................................45
表4-1各實驗所建立之檢量線................................................................56
表4-2各基質中DEHP之回收率...........................................................57
表4-3各基質中DBP之回收率...............................................................58
表4-4第7、14、21天DEHP於各介質之分布百分比........................62
表4-5第7、14、21天DBP於各介質之分布百分比..........................67

表4-6第0、7、14天DEHP於各介質之分布百分比........................71
表4-7第0、7、14天DBP於各介質之分布百分比...........................75


圖目錄
圖2-1 鄰苯二甲酸二(2-乙基己基)酯之結構式....................................4
圖2-2 鄰苯二甲酸二丁酯之結構式....................................................19
圖3-1實驗架構........................................................................................34
圖3-2水生微生態系統............................................................................40
圖3-3陸生微生態系統............................................................................43
圖3-4流水式底泥毒性測試系統............................................................46
圖4-1水中DEHP在21天實驗期間之濃度變化...................................61
圖4-2懸浮微粒中DEHP在21天實驗期間之濃度變化.... ..................61
圖4-3底泥中DEHP在21天實驗期間之濃度變化...............................62
圖4-4魚體中DEHP在7、14、21天實驗期間之濃度值.........................62
圖4-5水中DBP在21天實驗期間之濃度變化......................................65
圖4-6懸浮微粒中DBP在21天實驗期間之濃度變化..........................66
圖4-7底泥中DBP在21天實驗期間之濃度變化..................................66
圖4-8魚體中DBP在7、14、21天實驗期間之濃度值............................67
圖4-9魚體血漿中VTG在7、14、21天實驗期間之濃度值....................67
圖4-10土壤中DEHP於14天實驗期間之濃度值.................................70
圖4-11滲出水中DEHP於14天實驗期間之濃度值.............................70
圖4-12滲出水的懸浮微粒中DEHP 14天實驗期間之濃度值.............71
圖4-13蚯蚓中DEHP於14天實驗期間之濃度值.................................71
圖4-14土壤中DBP於14天實驗期間之濃度值...................................74
圖4-15滲出水中DBP 於14天實驗期間之濃度值...............................74
圖4-16滲出水的懸浮微粒中DBP 於14天實驗期間之濃度值.........75
圖4-17蚯蚓中DBP於 14天實驗期間之濃度值................................75
圖4-18毒性試驗期間底泥中DEHP濃度變化......................................77
圖4-19在暴露不同濃度DEHP 10天後絲蚯蚓之存活率變化.............78
圖4-20在暴露不同濃度DEHP 10天後,DEHP濃度與絲蚯蚓存活率之迴歸分析.................................................................................78
圖4-21毒性試驗期間底泥中DBP濃度變化.......................................80
圖4-22在暴露不同濃度DBP 10天後絲蚯蚓之存活率變化................81
圖4-23在暴露不同濃度DBP 10天後,DBP濃度與絲蚯蚓存活率之迴歸分析....................................................................................81
圖4-24底泥中DEHP+DBP毒性試驗期間DEHP濃度變化.................83
圖4-25 DEHP+DBP毒性試驗期間DBP濃度變化.............................83
圖4-26在暴露不同濃度DEHP與DBP 10天後絲蚯蚓之存活率變
化................................................................................................84
圖4-27在暴露不同濃度DEHP與DBP 10天後,DEHP濃度與絲蚯蚓存活率之迴歸分析....................................................................84

參考文獻
ACGIH, 2001. Documentation of the threshold limit values and biological exposure indices. American conference of governmental Industry hygienists( seventh edition), Cincinnati.
Adams W.J., Heidolph B.B., 1985. Short-cut chronic toxicity estimates using Daphnia magna. Specical Technical Publication 11, 87-103.
Adema D.M.M., Henzen L., 2001. De invloed van 50 Prioritaire stoffen op de groei van Lactuca sativa (sla.). TNO-Rapport No.21003.
Adema D.M.M.‚ Canton J.H.‚ Slooff W.‚ Hanstveit A.O.‚ 1981. Determine the aquatic toxicity of environmentally dangerous chemicals. National Institute of Public Health and Environmental Hygiene 81‚ 107.
Adeniyi A.A., Okedeyi O.O., Yusuf K.A., 2011. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun river catchments, Ketu, Lagos, Nigeria. Environmental Monitoring and Assessment 172, 561–569.
Arnot J.A., Gobas F.A.P.C., 2004. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environmental Toxicology and Chemistry 23, 43–55.
ATSDR, 1990. Toxicological profile for di-n-butylphthalate, Atlanta.
ATSDR, 2002a. Toxicological profile for di(2-Ethylhexyl)phthalate. Department Of Health And Human, Atlanta.
ATSDR, 2002b. Toxicological profile:di(2-ethylhexyl) phthalate. Agency for Toxic Substances and Disease Registry, Atlanta.
Barra A., Bottoni P., Grenni P., 2012. Microcosm studies to evaluate microbial potential to degrade pollutants in soil and ater ecosystems. Microchemical 107, 126-130.
Bengtsson B.E., Tarkpea M., 1983. The acute aquatic toxicity of some substances carried by ships. Marine Pollution Bulletin 14, 213-214.
Benoit D.A., Phipps G.L., Ankley G.T., 1993. A sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments. Water Research 27, 1403-1412.
Besser J.M., Ingersoll C.G., Brumbaugh W.G., Kemble N.E., May T.W., Wang N., MacDonald D.D., 2014. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea), compared to standard test organisms. Environmental Toxicology and Chemistry 10, 24-89.
Beyer J., Bechmann R.K., Taban I.C., Aas E., Reichert W., Seljeskog E., Sann S., 2001. Biomarker measurements in long term exposures of a model fish to produced water components (PAHs and alkylphenols). Report AM-01/007.
Birge W.J., Black J.A., Westerman A.G., 1978. Effects of polychlorinated biphenyl compounds and proposed PCB-replacement products on embryo-larval stages of fish and amphibians. University of Kentucky Water Resources Research Institute Research Report 118, 44.
Bizzari S.N., Blagoev M., Kishi A., 2007. Plasticizers. Chemical Economics Handbook, Menlo Park.
Brinke M., Ristau K., Bergtold M., Höss S., Claus E., Heininger P., Traunspurger W., 2011. Using meiofauna to assess pollutants in freshwater sediments: a microcosm study with cadmium. Environmental Toxicology and Chemistry 30, 427-38.
Burrows L.A., Edwards C.A., 2002. The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems. European Journal of Soil Biology 38, 245–249.
Cagianut B., 1954. Keratitis erosiva and nephritis toxica after dibutylphthalate. Schweizerische Medizinische Wochenschrift 84, 1243-12444.
Call D.J., Brooke L.T., Ahmad N., Richter J.E., 1983. Toxicity and metabolism studies with EPA (Environmental Protection Agency) priority pollutants and related chemicals in freshwater organisms. EPA 600/3-83-095, Duluth.
Canton J.H.‚ Adema D.M.M.‚ Zwart D.De.‚ 1984. Study to the usefulness of three egg-laying fish species in routine toxicity experiments. National Institute for Public Health and the Environment‚ RIVM Report 668114002 .
CERHR, 2000. NTP-CERHR expert panel report on di (2-Ethylhexyl) phthalate. Center for Evaluation of Risks to Human Reproduction, USA.
Chen X., Xu S., Tan T., Lee S.T., Cheng S.H., Lee F.W.F., 2014. Environmental Research and Public Health 11, 3156-3168.
Chowdhury M.M., Statham B.N., 2002. Allergic contact dermatitis from dibutyl phthalate and benzalkonium chloride in timodine cream. Contact Dermatitis 46, 57.
David R.M., Moore M.R., Finney D.C., Guest D., 2000. Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicological Sciences 58, 377-385.
David R.M., Moore M.R., Finney D.C., Guest D., 2001. Reversibility of the chronic effects of di(2-ethylhexyl)phthalate. Toxicologic Pathology 29, 430-439.
EC, 2005. EC of the evropeanparliament and of the council. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2005.344.01.0040.01.ENG.
EC, 2008. Bis(2-ethylhexyl) phthalate(DEHP). Institute for Health and Consumer Protection Toxicology and Chemical Substance, Italy.

ECB, 2000. Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packing and labeling of dangerous substances. (http://ecb.jrc.it/).
ECB, 2000. IUCLID chemical data sheet. http://ecb.jrc.it/IUCLIDDataSheets/112345.pdf.
Ehsan H., Zeid A., Shimaa A., Khalil A., 2014. Toxicological consequences ogf di-n-butyl-phthalate (DBP) on health of Nile Tilapia fingerlings. Animal and Veterinary Sciences 9, 269-276.
Eisenreich S.J., Looney B.B., Thornton J.D., 1981. Airborne organic contaminants in the great lakes ecosystem. Environmental Science and Technology 15, 30-38.
Ema M., Amano H., Ogawa Y., 1994. Characterization of the developmental toxicity of di-n-butyl phthalate in rats. Toxicology 86, 163 - 174.
Ema M., Kurosaka R., Amano H., Harazono A., Ogawa Y. 1995a. Comparative developmental toxicity of n-butyl benzyl phthalate and di-n-butyl phthalate in rats. Archives of Environmental Contamination and Toxicology 28, 233-238.
Ema M., Kurosaka R., Amano H., Ogawa Y., 1995. Comparative developmental toxicity n‐butyl benzyl phthalate and di‐n‐butyl phthalate in rats. Archives of Environmental ontamination and Toxicology 28, 223‐228.
EPA, 2000. Designation of hazardous substances. U.S. Environmental Protection Agency. Http://www.access.gpo.gov/nara/cfr/waisidx_00/40cfr14_00.html.
EPA, 2010. Draft Interim REL dibutyl phthalate (DBP). California Environmental Protection Agency. http://www.arb.ca.gov/consprod/regact/2010ra/dbp84742.pdf.
Fatoki O.S., Noma A., 2001a. Determination of phthalate esters in the aquatic environment. South African Journal of Chemistry 54, 69-83.
Fatoki O.S., Noma A., 2001b. Solid phase extraction method for selective determination of phthalate esters in the aquatic environment. Water, Air, and Soil Pollution 140, 85-98.
Fernandez M.P., Ikonomou M.G., Buchanan I., 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of the Total Environment 373, 250–269.
Folmar L.C., Denslow N.D., Vijayasri R., Chow M., Crain A.D., Enblom J., Marcino J., Guillette L.J., 1996. Vitellogenin induction and reduced serum testosterone concentrations in feral male carp(Cyprinu scarpio) captured near a major metropolitan sewage treatment plant. Environmental Health Perspectives 104, 1096-1101.

Foster L., MaFrenich A.G., Bonilla M.N.B., Martnezde J.C.L., Vidal J.L.M., Roberto R.G., 2009. Determination of di-(2-ethylhexyl)phthalate in environmental samples by liquid chromatography coupled with mass spectrometry. Separation Science 32, 1383-13899.

Franse P., Voogt K., 1997. Oestrogene verbindingen in het Nederlands milieu. Mill Test Report, Nederlands.
Fromme H., Kuchler T., Otto T., Pilz K., Muller J., Wenzel A., 2002. Occurrence of phthalates and bisphenol A and F in the environment. Water Research 36, 1429–1438.


Gamer A.O., Leibold E., Mellert W., Deckardt K., Kittel B., Hildebrand B., 2000. Di-n-butyl phthalate - subacute inhalation study in Wistar rats, Michigan.
Garrido F.A., Nieves d.l., Barco B.M., López M.JC., 2009. Determination of di-(2-ethylhexyl) phthalate in environmental samples by liquid chromatography coupled with mass spectrometry. Journal of Separation Science 32, 1383–1389.
Gasperi J., Garnaud S., Rocher V., Moilleron R., 2009. Priority pollutants in surface waters and settleable particles within a densely urbanized area: case study of Paris (France). Science of the Total Environment 8, 2900-2908.
German Chemical Society, 1987. Dibutyl phthalate. http://www.meti.go.jp/english/report/downloadfiles/gED0312e.pdf
Giam C.S., Atlas E., Powers M.A.J., Leonard J.E., 1984. Phthalic acid esters. In: The Handbook of Environmental Chemistry 3, 67–142.
Giesy J.P., Hoke R.A., 1989. Freshwater sediment toxicity bioassessment: rational for species selection and test design. Journal of Great Lakes Research 15, 539-569.
Gobas F., 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: application to lake Ontario. Ecological Modelling 69, 1-17.
Gray L.J., Ostby J., Furr J., Price M., Veeramachaneni D.N., Parks L., 2000. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicological Sciences 58, 350-365.
Hardin B.D., Schuler R.L., Burg J.R., Booth G.M., Hazelden K.P., MacKenzie K.M., Piccirillo V.J., Smith K.N., 1987. Aquatic toxicology and hazard assessment: 12th. Teratogenesis, Carcinogenesis, and Mutagenesis 7, 29-48.
Hazleton Biotechnologies Company, 1992. A subchronic (13-week) dietary oral toxicity study of di (2-ethylhexyl) phthalate in Fischer 344 rats. http://www.meti.go.jp/english/report/downloadfiles/gED0313e.pdf.
Heijkenskjöld‚ 2003. Risk reduction strategy ((bis(2-etylhexyl)phtalate, DEHP), Sweden.

Hill E.F., Heath R.G., Spann J.W., and Williams J.D., 1975. Lethal dietary toxicities of environmental pollutants to birds. Fish and Wildlife Service 191, 61.
Hill E.F., Heath R.G., Spann J.W., Williams J.D., 1975. Lethal dietary toxicities of environmental pollutants to birds. U.S. Fish and Wildlife Service 191, 61-66.
Howard P.H., Boethling R.S., Jarvis W.F., Meylan W.M., Michalenko E.M., 1991. Handbook of environmental degradation rates, Chelsea.
HSDB‚ 2010. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB and search on CAS number.
Huang G.L., Houa S.G., Wang L., Sun H.W., 2007. Distribution and fate of nonylphenol in an aquatic microcosm. Water Research 41, 4630 – 4638.
Huang P.C., Tien C.J., Sun Y.M., 2008. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 73, 539–544.
Hudson R.A., Austerberry C.F., Bagshaw J.C., 1981. Phthalate ester hydrolases and phthalate ester toxicity in synchronously developing larvae of the brine shrimp (artemia). Life Sciences 29, 1865-1872 .
Hwang H.M., Green P.G., Young T.M., 2006. Tidal salt marsh sediment in California. Part 1: occurrence and sources of organic contaminants. Chemosphere 64, 1383–1392.
IARC, 2000. Di(2-ethylhexyl) phthalate. International Agency for Research on Cancer 77, 41-148.
IARC, 2001. IARC monograph on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/
IPCS, 1997. Environmental health criteria 189. http://www.meti.go.jp/english/report/downloadfiles/gED0312e.pdf
IRIS, 2002. Integrated risk information system, national library of medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?IRIS.
Ito Y., Yamanoshita O., Asaeda N., Tagawa Y., Lee C., Aoyama T., 2007. Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. Occupational Health 49, 172-182.

Jansen M. S., Veit U., Dudel G., Altenburger R., 2008. An ecological perspective in aquatic ecotoxicology: approaches and challenges, Basic and Applied Ecology 9, 337–345.
Japan Society for Occupational Health, 2001. Advice on the tolerance limit. San Ei Electronic Industries 43, 95-119.
Johnson B.T., Heitkamp M.A., Jones J.R., 1984. Environmental and chemical factors influencing the biodegradation of phthalic acid esters in freshwater sediments. Environmental Pollution 8, 101-118.
Jorg O, 2009. A critical analysis of the biological impacts of plasticizers on wildlife. Biological Sciences , 2047-2062.
Karara A.H., Hayton W.L., 1984. Pharmocokinetic model for the uptake and disposition of di-2-ethylhexyl phehalate in sheepheadminnows(cyprinoodonvariegatus). AquatToxicol 5, 181-195.
Karara A.H., Hayton W.L., 1989. A pharmacokinetic analysis of the effect of temperature on the accumulation of di-2-ethxyl phthalate(DEHP) in sheepshead minnow. Aquatic Toxicology 15, 27-36.
Katsu Y., Lange A., Ichikawa R., Urushitani H., Paull G.C., Cahill L.L., Jobling S., Tyler C.R., Iguchi T., 2007. Functional associations between two estrogen receptors, environmental estrogens and sexual disruption in the roach (Rutilus rutilus). Environmental Science &; Technology 41, 3368-3374.
Kevy S.V., Jacobson M.S., 1982. Hepatic effects of a phthalate ester plasticizer leached from poly(vinyl chloride) blood bags following transfusion. Environmental Health Perspectives 45,57-64.
Killinger J.M., Basaran A.H., Mezza L.E., 1988. Prechronic dosed feed study of dibutyl phthalate (CAS No. 84-74-2) in B6C3F1 mice (phase I-maximum perinatal dose). National Toxicology Program, Research Triangle Park.
Kim H.K., Yun Y.K., Ahn Y.J., 2008. Fumigant toxicity of cassia bark and cassia and cinnamon oil compounds to dermatophagoides farinae and dermatophagoides pteronyssinus (acari: Pyroglyphidae). Experimental and Applied Acarology 44, 1-9.


Kluwe W.M., Haseman J.K., Douglas, J.F., HuffJ E., 1982. The carcinogenicity of dietary di(2-ethylhexyl) phthalate (DEHP) in Fischer 344 rats and B6C3F1 mice. Toxicology and Environmental Health 10, 797–815.
Kurata Y., Kidachi F., Yokoyama M., Toyota N., Tsuchitani M., Katoh M., 1998. Subchronic toxicity of di(2-ethylhexyl)phthalate in common marmosets: lack of hepatic peroxisome proliferation, testicular atrophy, or pancreatic acinar cell hyperplasia. Toxicological Sciences 42, 49 - 56.
Li J., Chen J.A., Zhao Q., Li X., Shu W.Q., 2006. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65, 1627–1633.
Liu Y., Chen Z., Shen J., 2013. Occurrence and removal characteristics of phthalate esters from typical water sources in Northeast China. Journal of Analytical Methods in Chemistry 2013, 1-8.
Ljungvall K., Spjuth L., Hulten F., Einarsson S., Rodriguez H.M., Andersson K., Magnusson U., 2006. Early post-natal exposure to low dose oral di(2ethylhexyl) phthalate affects the peripheral LH-concentration in plasma, but does not affect mating behavior in the Post-Pubertal Boar. Reproductive Toxicology 21, 160-166.
Macek K.J., Petrocelli S.R., Sleight B.H., 1979. Considerations in assessing the potential for, and significance of, biomagnification of chemical residues in aquatic food chains. Aquatic Toxicology 667, 251-268.
Maradonna F., Evangelisti M., Gioacchini G., Migliarini B., Olivotto I., Carnevali O., 2013. Assay of vtg, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of the harmful effect of di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicology in Vitro 27, 84-91.
Maradonna F., Evangelisti M., Gioacchini G., Migliarini B., Olivotto I., Carnevali O., 2013. Assay of vtg, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicology in Vitro 27, 84–91.

Mayer F.L., Ellersieck M.R., 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour , Sabine Island.
Mayer F.L., Sanders H.O., 1973. Toxicology of phthalic acid esters in aquatic organisms. Environmental Health Perspectives 3, 153–157.
Mayer F.L., Stalling D.L., Johnson J.L., 1972. Phthalate esters as environmental contaminants. Nature 238, 411–413.
Mira M.G., Smit Z., Puntarić D., BosnirJ., 2002. Phthalates in underground waters of the Zagreb area. Croatian Medical Journal 43, 493-497.
Mira M.G., Zdenko Š., Dinko P., Jasna B.‚ 2002. Phthalates in underground waters of the Zagreb Area. Croatian Medical Journal 43, 493-497.
Müller A.K., Nielsen E., Ladefoged O., 2003. Human exposure to selected phthalates in Denmark. The Danish Veterinary and Food Administration‚ Denmark.
Mylchreest E., Sar M., Cattley R.C., Foster P.M.D., 1999. Disruption of androgen-regulated male reproductive development by di (n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicology and Applied Pharmacology 156, 81-95.
Neuhauser E.F., Loeh R.C., Malecki M.R., Milligan D.L., Durkin P.R., 1985. The toxicity of selected organic chemicals to the earthworm eiseniafeida. Journal of Environmental Quality 14, 383-388.
Neuhauser E.F.‚ Loehr R.C.‚ Malecki M.R.‚ 1986. Contact and artificial soil tests using earthworms to evaluate the impact of wastes in soil. Hazardous and Industrial Solid Waste Testing 1‚ 192-203.
NICNAS, 2008. Phthalates hazard compendium: a summary of physicochemical and human health hazard data for 24 ortho-phthalate chemicals‚ Australia.
Nielsen E.‚ Larsen P.B.‚ 1996. Toxicological evaluation and limit values for DEHP and phthalates other than DEHP. Danish Environmental Protection Agency‚ Denmark .
Nite, 2003a. Bis(2-ethylhexyl)phthalate. National Institute of Technology and Evaluation, Tokyo.

Nite‚ 2003b. Bis(2-ethylhexyl)phthalate. http://www.safe.nite.go.jp/risk/kenkyukai.html.
NTP, 1982. Carcinogenicity bioassay of di(2-ethylhexyl) phthalate (CAS No. 117-82-7) in F344 rats and B5C3F1 mice (feed study). National toxicology program 217, 82-177.
NTP, 2000. 9th Repoprt on Carcinogens .U.S. Department of Health and Human Services Public Health Service. http://www.hhs.gov/
NTP, 2003. NTP-CERHR monograph on the potential human reproductive and developmental effects of butyl benzyl phthalate (BBP). Center for the evaluation of risks to human reproduction, National Toxicology Program, Triangle Park.
Oehlmann J., Schulte O.U., Kloas W., Jagnytsch O., Lutz I., Kusk K.O., Wollenberger L., Santos E.M., Paull G.C., Van L.K.J., Tyler C.R., 2009. A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society (Biological Sciences) 364, 2047-2062.
Oishi S., Hiraga K., 1980. Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicology and Applied Pharmacology 53, 35 - 41.
Peijnenburg W.J.G.M., Struijs J., 2006. Occurrence of phthalate esters in the environment of the Netherlands. Ecotoxicology and Environmental Safety 63, 204–215.
Peterson D.R., Staples C.A., 2003. Degradation of phthalate esters in theenvironment. The Handbook of Environmental Chemistry 3, 85–124.
Peterson J.C., Freeman D.H., 1982. Phthalate ester concentration variations in dated sediment cores from the Chesapeake Bay. Environmental Science and Technology 16, 464–469.
Poon R., Lecavalier P., Mueller R., Valli V.E., Procter B.G., Chu I., 1997. Subchronic oral toxicity of di-n-octyl phthalate and di (2-Ethylhexyl) phthalate in the rat. Food and Chemical Toxicology 35, 225 - 239.




Puy A.E., Ortiz Z.M., Villagrasa M., Kuster M., Aragón P., Atienza J., Puchades R., Maquieira A., Domínguez C., López A. M., Fernandes D., Porte C., Bayona J.M., Barceló D., Cajaraville M.P., 2013. Endocrine disruption in thicklip grey mullet (Chelonlabrosus) from the Urdaibai Biosphere Reserve (Bay of Biscay, Southwestern Europe). Science of the Total Environment 443, 233-244.
Reddy B., Rozati R., Reddy B.,Raman N., 2006. Association of phthalate esters with endometriosis in Indian women. Obstetrics and Gynaecology 113, 515‐520.
Rudel H., Schmidt S., Kordel W., Klein W., 1993. Degradation of pesticides in soil: comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Science of the Total Environment 132, 181-200.
Russell D.J., McDuffie B., 1983. Analysis for phthalate esters in environmental samples: separation from PCBs and pesticides using dual column liquid chromatography. International Journal of Environmental Analytical Chemistry 15, 165–183.
Sánchez A.J., Fernandez S.M., Vicente J., Lacorte S., 2011. Development of a multi-residue method for the determination of organic micropollutant in water, sediment and mussels using gas chromatography-tandem mass spectrometry. Chromatography A38, 12-18.
Sanders H.O., Mayer F.L., Walsh D.F., 1973. Toxicity, residue dynamics, and reproductive effects of phthalate esters in aquatic invertebrates. Environmental Research 6, 84-90.
Schiedek T.‚ 1995. Impact of plasticizers (phthalic acid esters) on soil and groundwater quality. International Association of Hydrological Sciences 225, 149-156.
Schiedek T.‚ 1995. Impact of plasticizers (phthalic acid esters) on soil and groundwater quality. International Association of Hydrological Sciences 225‚ 149-156.
Schouten M.J., Copius P.J.W., Brinkman U.A.T., 1979. Liquid chromatographic analysis of phthalate esters in Dutch river water. International Journal of Environmental Analytical Chemistry 7, 13-23.

Schouten M.J., Peereboom J.W. C., Brinkman U.A.T., 1979. Liquid chromatographic analysis of phthalate esters in Dutch river water. International Journal of Environmental Analytical Chemistry 7, 13-23.
Shaffer C.B., Carpenter C.P., Smyth H.F., 1945. Acute and subacute toxicity of di(2-ethylhexyl) phthalate with note upon its metabolism. Hygiene Toxicology 27, 130 - 135.
Shanker R ., Ramakrishna C., Seth P.K., 1985. Rethinking risk and the precautionary principle. Environmental Pollution 39, 1.
Shiota K., Nishimura H., 1982. Teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) in mice. Environmental Health Perspectives 45, 65 - 70.
Simpson S.L., King C.K., 2005. Exposure-pathway models explain causality in whole sediment toxicity tests. Environmental Science &; Technology 39, 837-843.
Srivastava, S.P., Srivastava, S., Saxena, D.K., Chandra, S.V. and Seth, P.K., 1990. Testicular effects of di-n-butyl phthalate (DBP): biochemical and histopathological alterations. Archives of Toxicology 64, 148 - 152.
Stalling D.L., Hogan J.W., Johnson J.L., 1973. Phthalate ester residues: Their metabolism and analysis in fish. Environmental Health Perspectives 3, 159–173.
Staples C.A., Adams W.J., Parkerton T.F., Peterson R., 1997. The environmental fate of phthalate esters: a literature review. Chemosphere 35, 667-749.
Swan S.H., Main K.M., Liu F., Stewart S.L., Kruse R.L., Calafat A.M., 2005. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives 113, 1056-1061.
Swartz R.C., Schults D.W., Ditsworth G.R., 1983. Sediment toxicity, contamination, and macrobenthic communities near a large sewage outfall. U.S. Environmental Protection Agency, Washington.
Tagatz M.E., Stanley R.S., 1987. Sensitivity comparisons of estuarine benthic animals exposed to toxicants in single species acute tests and community tests. EPA 600/X-87/167, Gulf Breeze, 16.


Tan G.H., 1995. Residue levels of phthalate esters in water and sediment samples from the Klang river basin. Bulletin of Environmental Contamination and Toxicology 54, 171-176.
Thuren A., Woin P., 1991. Effects of phthalate esters on the locomotor activity of the freshwater amphipod Gammaruspulex. Toxicology Bulletin of Environmental Contamination 46, 159–166.
Tsuji S., Tonogai Y., Ito Y., Kanoh S., 1986. The Influence of rearing temperatures on the toxicity of various environmental pollutants for Killifish (Oryzias latipes). Eisei kagaku 32, 46–53.
Tyl R., Jones P.C., Marr M.C., Kimmel C.A., 1984. Teratological evaluation of diethylhexylphthalate (CAS No. 117-81-7) in CD-1 mice. National Center for Toxicological Research 10, 85-10.
Tyl R.W., Jones P.C., Marr M.C., Kimmel C.A., 1988. Developmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundamental and Applied Toxicology 10, 395 - 412.
Vikelsøe J., Thomsen M., Johansen E., Carlsen L., 1999. Phthalates and nonylphenols in soil. Ministry of Environment and EnergyNational Environmental Research Institute, Denmark.
Vitali M., Guidotti M., Macilenti G.,Cremisini C., 1997. Phthalate esters in freshwaters as markers of contamination sources – a site study in Italy. Environment international 23, 337-347.
Voss C., Zerban H., Bannasch P., Berger M.R., 2004. Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats. Toxicology 206, 359-371.
Wams T.J., 1987. Diethylhexylphthalate as an environmental contaminant–a review. Science of the Total Environment 66, 1–16.
Wang P., Zhang L., Liu L., Chen L., Gao H., Wu L., 2014. Toxicity of sediment cores from Yangtze River estuary to zebrafish (Danio rerio) embryos. Environmental science and pollution research international 11, 25-29.
Washington H.I., 1992. A subchronic (4-week) dietary oral toxicity study of di(2-ethylhexyl) phthalate in B6FC3F1 mice. Office of Toxic Substances, Washington.


Wilson W.B., Giam C.S., Goodwin T.E., Aldrich A., Carpenter V., Hrung Y.C., 1978. The toxicity of phthalates to the marine dinoflagellate Gymnodinium breve. Bulletin of Environmental Contamination and Toxicology 20, 149-154.
Yan H., Ye C., Yin C., 1995. Kinetics of phthalate ester biodegradation by chlorella pyrenoidosa. Environmental Toxicology and Chemistry 14, 931-938.
Yoshioka Y., Ose Y., Sato T., 1986. Correlation of the five test methods to assess chemical toxicity and relation to physical properties. Ecotoxicology and Environmental Safety 12, 15-21.
Zhao X., Gao Y., Qi M., 2014. Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker. Ecotoxicology 23, 626-632.
Zhou Y., Wang H., Chen Y., Jiang Q.‚ 2011. Environmental and food contamination with plasticisers in China. International Journal of Environmental Research and Public Health 7‚ 2745-2788.
孔繁翔,2000,環境生物學,北京高等教育出版社。
田海峰、孟彥、肖漢兵,2014,水生動物卵黃蛋白原研究新進展,南方水產科學,10(4):91-96,湖北。
行政院環保署,2008,我國石綿管制現況與展望,環境檢驗電子報第九期,台北。
行政院環保署,2011a,環境荷爾蒙管理計畫(100 年滾動修正版),台北。
行政院環保署,2011b,環境荷爾蒙管理,台北。
行政院環保署,2013a,50種毒性化學物質國內運作調查作業,台北。
行政院環保署,2013b,102年度毒性化學物質環境流布背景調查計畫,台北。
行政院環保署,2014,毒性化學物質環境流布調查成果手冊,台北。
宋廣寧、代靜玉、胡峰,2010,鄰苯二甲酸酯在不同類型土壤-植物系統中的累積特徵研究,農業環境科學學報,29(8):1502-1508,南京。
李育培、刁曉明、盛曉灑、權恆、翟旭亮、李雲,2010,瓦氏黃顙魚(瓦氏黃顙魚)卵黃蛋白原的純化,性質鑑定及ELISA檢測方法的建立,海洋與湖沼,41(1):91-98,重慶。
周家宏,2009,仿雌激素物質誘發澤蛙(Ranalimmocharis) 卵黃前質蛋白之研究,嘉南藥理科技大學碩士論文,台南。
林哲雄,2012,底泥生物慢毒性檢測技術最新發展,行政院環境保護署環境檢驗所,台北。
陳珮珊,2000,烷基酚類化合物對雄性鯉魚卵黃前質生成之影響,陽明大學碩士論文,台北。
陳偉立、施李碧玉、陳立奇,2012,塑化劑對醫藥品影響及致癌機轉之探討,臺灣臨床藥學雜誌,20(4):315-327。
楊喜男,2010a,底泥生物測試,行政院環境保護署環境檢驗所,台北。
楊喜男,2010b,美國短期研習經驗談,行政院環境保護署環境檢驗所,台北。
韓志泉,1995,水絲蚓,生物學通報。
魏瑞齊,2014,建立底泥中多環芳香碳氫化合物毒性試驗研究,國立高雄師範大學碩士論文,高雄。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔