(54.236.58.220) 您好!臺灣時間:2021/03/08 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳經明
研究生(外文):Ching-Ming Chen
論文名稱:柴油污染土壤中多環芳香族碳氫化合物之生物降解研究
論文名稱(外文):Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Diesel Contaminated Soil
指導教授:陳士賢陳士賢引用關係
指導教授(外文):Colin S. Chen
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:多環芳香族族碳氫化合物生物降解生物反應槽
外文關鍵詞:polycyclic aromatic hydrocarbonbiodegradationbioreactor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
多環芳香族族碳氫化合物(polycyclic aromatic hydrocarbons, PAHs)的污染日益受到全球性的關注其潛在的後果是對生態系統及人類健康的影響,出自這個原因越來越受到人們把重心放在研究新的策略和環保技術上應用受到碳氫化合物污染的土壤整治中。其中,生物技術的策略在基礎上刺激生物原微生物群落加快生物降解有機污染物的過程具有特別的意義。
本研究主要探討利用來自石化污染場址中所分離的菌種(Pseudomonas sp. NKNU01, Bacillus sp. NKNU01, Klebsiella sp. NKNU01, Enterobacter sp. NKNU01, Enterobacter sp. NKNU02),進行PAH生物降解試驗。分別利用批次試驗求得,降解效率在單一菌種Enterobacter sp. NKNU01為68%、Pseudomonas sp. NKNU01為61%。使用生物反應槽利用批次試驗所得實驗條件進行提高PAHs濃度降解試驗,Pseudomonas sp. NKNU01實驗分解PAHs達70.85%;另一方Enterobacter sp. NKNU01降解PAHs皆約達50.73%。相較不同環數下降解PAHs的效果,Pseudomonas sp. NKNU01降解Σ2-ring PAHs約達64.69%,Σ3-ring PAHs以及Σ4-ring PAHs都可約達70%,而Enterobacter sp. NKNU01只有降解都可達到50%。Pseudomonas sp. NKNU01 與Enterobacter sp. NKNU01降解Naphthalene試驗中最大值可以達到55%。

Abstract
The contamination by hydrocarbons represents a global concern for the potential consequences on ecosystem and human health. For this reason an increasing attention has been directed toward the research of new strategies and environmental-friendly technologies to be applied for the remediation of contaminated soil by hydrocarbons. Among these, biotechnological strategies based on the biostimulation of autochthonous microbial communities to speed up biodegradation processes of organic pollutants are of particular relevance. Inorganic nutrients stimulated microbial growth and enhanced the biodegradation of low and high molecular weight hydrocarbons, whereas sand amendment increased only the removal of high molecular weight compounds.
The objective of this reach was to investigate the biodegradation potential of PAHs by different bacterial species (Pseudomonas sp., Bacillus sp., Klebsiella sp., Enterobacter sp.) and to evaluated the pure culture with the best PAH-degrading ability and the best growth condition for these microorganisms. Enterobacter sp. NKNU01 could degrade about 68 % of PAHs;Pseudomonas sp. NKNU01 could degrade about 61 % of PAHs. The bioreactor with conditions obtained from the batch experiment was applied to enhance degradation of PAHs. Pseudomonas sp. NKNU01 could degrade about 70.85% of PAHs. It was found that Enterobacter sp. NKNU01 degraded about 50.73 % of PAHs. By applying Pseudomonas sp. NKNU01, the concentration of Σ2-ring PAHs was reduced by 64.69%, whereas the concentration of Σ4-ring PAHs and 3-ring PAHs decreased up to 70%. Degradation of Σ4-ring PAHs by Enterobacter sp. NKNU01 was about 50%. Maximum was about degradation of naphthalene 55%, by Pseudomonas sp. NKNU01 and Enterobacter sp. NKNU01.

目錄
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻探討 5
2.1多環芳香族碳氫化合物 5
2.1.1多環芳香族碳氫化合物特性及來源 5
2.1.2多環芳香族碳氫化合物在環境的分布 5
2.2 PAHS物化性質 6
2.3 降解PAHS之菌種 6
2.3.1降解PAHs之菌種 6
2.4 生物處理技術 11
2.4.1 生物反應槽 11
2.4.2環境中對PAHs之生物分解 12
2.5生物分解有機污染物之影響 13
2.6 PAHS污染物特性 14
2.7土壤 16
2.8微生物分解與PAHS傳輸行為之關係 16
第三章 材料方法 18
3.1 實驗材料及基本性質 18
3.1.1 實驗藥品 18
3.1.2柴油油品 19
3.1.3試驗土壤 19
3.1.4實驗菌種 19
3.2 實驗設備 21
3.2.1生物反應槽-攪拌式生物反應槽 21
3.2.2氣相層析儀/質譜儀 23
3.2.3樣品使用GC/MS分析設定條件 23
3.2.4實驗品保/品管 23
3.3 實驗方式 25
3.3.1 批次試驗 25
3.3.2實驗方法流程 27
第四章 結果與討論 28
4.1 批次試驗 28
4.1.1使用微生物進行底泥污染復育 28
4.2 生物反應槽試 33
4.2.1 PAHs於生物反應槽條件測試 33
4.2.2 菌種於生物反應槽分解PAHs情形 33
4.3 菌種於生物反應槽分解16種 PAHS情形 38
4.4 菌種於生物反應槽分解不同環數PAHS之情形 53
4.5 QA/QC 69

第五章 結論與建議 70
5.1 結論 70
5.2 建議 70
參考文獻 71
表目錄
表2.1 24種常見PAHs之理化特性………………………………….7
表2.2 降解PAHs之菌種…………………………………………….9
表4.1 批次試驗中五株菌於培養7、14與21天之降解ΣPAHs情形
………………………………………………………………..30
表4.2 批次試驗中五株菌於培養7、14與21天之ΣPAHs濃度變化情形………………………………………………………….31
表4.3 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於
生物反應槽培養15天降解………………………………….36
表4.4 PAHs於生物反應槽培養15天降解………………………..40
表4.5 以 Pseudomonas sp. NKNU01 於生物反應槽培養15天降解PAHs …………...…………………………………………….42
表4.6 以 Pseudomonas sp. NKNU01 於生物反應槽培養15天降解PAHs ………...……………………………………………….44
表4.7 PAHs於生物反應槽培養15天降解………………………..47
表4.8 以Enterobacter sp. NKNU01於生物反應槽培養15天降解
PAHs………………………………….………………………49
表4.9 以 Enterobacter sp. NKNU01 於生物反應槽培養15天降解PAHs………...…………………………………………….….51
表4.10 以 Pseudomonas sp. NKNU01 於生物反應槽培養15天降解PAHs………...…………………………………………….….57
表4.11 以 Enterobacter sp. NKNU01 於生物反應槽培養15天降解PAHs………...…………………………………………….….58
表4.12 菌種在生物反應槽試驗中菌數……………………………...67
表4.13 PAHs回收率…...………………………………………….….69
圖目錄
圖1.1 研究架構……….....................................................................4
圖2.1 固-液兩相生物反應槽.......................................................15
圖3.1 生物反應槽..............................................................................22
圖4.1 菌種培養0天、7天、14天與21天代謝降解PAHs差
異情形.........................................................................32
圖4.2 以 Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解PAHs…………………...……37
圖4.3 PAHs於生物反應槽培養15天降解…………………………41
圖4.4 以 Pseudomonas sp. NKNU01 於生物反應槽培養15天降解PAHs……………………...………………………………..…43
圖4.5 以 Pseudomonas sp. NKNU01 於生物反應槽培養15天降解PAHs……………………...………………………………..…45
圖4.6 PAHs於生物反應槽培養15天降解……………………..…48
圖4.7 以 Enterobacter sp. NKNU01 於生物反應槽培養15天降解PAHs……………………...………………………………..…50
圖4.8 以 Enterobacter sp. NKNU01 於生物反應槽培養15天降解PAHs……………………...………………………………..…52
圖4.9 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Naphthalene…...……..……..…59
圖4.10 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Acenaphthylene……….…....…60
圖4.11 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Acenaphthene……….…………61
圖4.12 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Fluorene……….…………….…62
圖4.13 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Phenanthrene…………..…….…63
圖4.14 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Anthracene………….....…….…64
圖4.15 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Fluoranthene…………...…….…65
圖4.16 以Pseudomonas sp. NKNU01和Enterobacter sp. NKNU01於生物反應槽培養15天降解Pyrene…………...……….….…66

圖4.17 菌種在生物反應槽試驗中菌數表現趨勢圖………………...68

參考文獻
蔡輔育(2008)油污染廠址之菌相分析及分離具分解MTBE潛力之菌種,高雄師範大學生物科技研究所碩士論文。高雄。
Acevedo, F., Pizzul, L., Castillo Mdel, P., Cuevas, R., Diez, M. C. (2011). Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater, 185(1), 212-219.
Ahn, S., Werner, D., Luthy, R. G. (2008). Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents. Water Res, 42(12), 2931-2942.
Aitken, M.D., Stringfellow, W.T., Nagel, R.D., Kazunga, C., Chen, S.H. (1998). Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 44, 743–752.
Antizar-Ladislao, B., Lopez-Real, J., Beck, A. (2004). Bioremediation of Polycyclic Aromatic Hydrocarbon (PAH)-Contaminated Waste Using Composting Approaches. Critical Reviews in Environmental Science and Technology, 34(3), 249-289.
Arzayus, K. M., Dickhut, R. M., Canuel, E. A. (2002). Effects of physical mixing on the attenuation of polycyclic aromatic hydrocarbons in estuarine sediments. [Article; Proceedings Paper]. Organic Geochemistry, 33(12), 1759-1769.
Baldwin, B. R., Nakatsu, C. H., Nebe, J., Wickham, G. S., Parks, C., Nies, L. (2009). Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. J Hazard Mater, 163(2-3), 524-530.
Baldwin, B. R., Nakatsu, C. H., Nies, L. (2008). Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res, 42(3), 723-731.
Bamforth, S. M., Singleton, I. (2005a). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology &; Biotechnology, 80(7), 723-736.
Bamforth, S. M., Singleton, I. (2005b). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. [Review]. Journal of Chemical Technology and Biotechnology, 80(7), 723-736.
Beck, A.J., Johnson, D.L., Jones, K.C. The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils. Sci. Total Environ. 185(1–3), 125–149, 1996.
Bellas, J., Nieto, Ó., Beiras, R. (2011). Integrative assessment of coastal pollution: Development and evaluation of sediment quality criteria from chemical contamination and ecotoxicological data. Continental Shelf Research, 31(5), 448-456.
Birdwell, J. E., Thibodeaux, L. J. (2009). PAH Repartitioning in Field-Contaminated Sediment Following Removal of the Labile Chemical Fraction. [Article]. Environmental Science &; Technology, 43(21), 8092-8097.
Boffetta, P., Jourenkova, N., Gustavsson, P. (1997). Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes and Control, 8, 444–472.
Boldrin, B., Tiehm, A., Fritzsche, C. (1993). Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Applied and Environmental Microbiology, 59, 1927–1930.
Borràs, E., Caminal, G., Sarrà, M., Novotný, C. (2010). Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biology and Biochemistry 42, 2087e2093.
Bostrom, C., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., Westerholm, R. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 3, 451–488.
Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F., Vandecasteele, J.P. (1999). Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, 10, 429–435.
Bouchez, M., Blanchet, D., Haeseler, F., Vandecasteele, J.P. (1996). Polycyclic aromatic hydrocarbons in the environment. Microbial Degradation, 51, 797–828.
Brandt, C.A., Becker, J.M., Porta, A. Distribution of polycyclic aromatic hydrocarbons in soils and terrestrial biota after a spill of crude oil in Trecate, Italy. Environ. Toxicol. Chem. 21(8), 1638–1643, 2002.
Caldini, G., Cenci, G., Manenti, R., Morozzi, G. (1995). The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other fourring porynuclear aromatic hydrocarbons. Applied Microbiology and Biotechnology, 44, 225–229.
Cebron, A., Faure, P., Lorgeoux, C., Ouvrard, S., Leyval, C. (2013). Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation. Environ Pollut, 177, 98-105.
Cebron, A., Norini, M. P., Beguiristain, T., Leyval, C. (2008). Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods, 73(2), 148-159.
Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368, 1992.
Chen, C. S., Roa, P. S. C., Lee, L. S. (1996) Evaluation of extraction and detection methods for determining polynculear aromatic hydrocabons from coal tar contaminated soils, Chemosphere, 32(6):1123-1132
Chen, S. C., Chen, C. S., Zhan, K. V., Yang, K. H., Chien, C. C., Shieh, B. S. (2011). Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02. J Hazard Mater, 186(2-3), 1744-1750.
Chen, S. H., Aitken, M. D. (1999). Salicylate stimulates the degradation of highmolecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila PI5. Environmental Science and Technology, 33, 435–439.
Chiavola, A., Baciocchi, R., Gavasci, R. (2010). Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor. J Hazard Mater, 184(1-3), 97-104.
Covino, S., Svobodová, K., Cvan carová, M., D’Annibale, A., Petruccioli, M., Federici, F.,K resinová, Z., Galli, E., Cajthaml, T., (2010). Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere 79, 855e864.
Cutright, T.J., Lee, S. (1994). Remediation of PAH-contaminated soil using Achromobacter sp. Energy Sources, 16, 279–287.
Dyke, P. H., Foan, C., Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere 50(4), 469–480.
Eijsackers, H., Bruggeman, J., Harmsen, J., de Kort, T., Schakel, A. (2009). Colonization of PAH-contaminated dredged sediment by earthworms. Applied Soil Ecology, 43(2-3), 216-225.
Elliot, R., Singhal, N., Swift, S. (2010). Surfactants and Bacterial Bioremediation of Polycyclic Aromatic Hydrocarbon Contaminated Soil—Unlocking the Targets. Critical Reviews in Environmental Science and Technology, 41(1), 78-124.
Farhadian, M., Vachelard, C., Duchez, D., Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol, 99(13), 5296-5308.
Ferrarese, E., Andreottola, G., Oprea, I. A. (2008). Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater, 152(1), 128-139.
Fernandez, P., Grimalt, J. O., Vilanova, R. M. (2002). Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environl. Sci. Technol. 36(6), 1162–1168.
Gan, S., Lau, E. V., Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater, 172(2-3), 532-549.
Gandolfi, I., Sicolo, M., Franzetti, A., Fontanarosa, E., Santagostino, A., Bestetti, G., (2010). Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresource Technology 101, 568e575.
Ghoshal, S., Ramaswami, A., Luthy, R. G. (1996). Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems. [Article]. Environmental Science &; Technology, 30(4), 1282-1291.
Grosser, R. J., Warshawsky, D., Vestal, J. R. (1991). Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Applied and Environmental Microbiology, 57, 3462–3469.
Guo, C., Ke, L., Dang, Z., Tam, N. F. (2011). Temporal changes in Sphingomonas and Mycobacterium populations in mangrove sediments contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs). Mar Pollut Bull, 62(1), 133-139.
Hale, S. E., Meynet, P., Davenport, R. J., Jones, D. M., Werner, D. (2010). Changes in polycyclic aromatic hydrocarbon availability in River Tyne sediment following bioremediation treatments or activated carbon amendment. Water Res, 44(15), 4529-4536.
Hamdi, H., Benzarti, S., Manusad zianas, L., Aoyama, I., Jedidi, N., (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39, 1926e1935.
Hao, R., Wan, H. F., Song, Y. T., Jiang, H., Peng, S. L. (2007). Polycyclic aromatic hydrocarbons in agricultural soils of the southern Subtropics, China. Pedosphere, 17, 673–680.
Haritash, A. K., Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater, 169(1-3), 1-15.
Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J., Staley, J. T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp.nov. Apptied and Environmental Microbiology, 65, 251–259.
Hughes, J. B., Beckles, D. M., Chandra, S. D., Ward, C. H. (1997). Utilization of bioremediation processes for the treatment of PAH-contaminated sediments. [Article]. Journal of Industrial Microbiology &; Biotechnology, 18(2/3), 152.
Johnsen, A. R., Karlson, U. (2007). Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol, 76(3), 533-543.
Johnson, A. R., Wick, L. Y., Harms, H., (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution 133, 71e84.
Johnson, M. D., Huang, W., Weber, W. J. (2001). A Distributed Reactivity Model for Sorption by Soils and Sediments. 13. Simulated Diagenesis of Natural Sediment Organic Matter and Its Impact on Sorption/Desorption Equilibria. Environmental Science &; Technology, 35(8), 1680-1687.
Jouanneau, Y., Willison, J. C., Meyer, C., Krivobok, S., Chevron, N., Besombes, J. L., et al. (2005). Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation. [Article]. Environmental Science &; Technology, 39(15), 5729-5735.
Kao, C. M., Chen, C. S., Tsa, F. Y., Yang, K. H., Chien, C. C., Liang, S. H., et al. (2010). Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater, 178(1-3), 409-416.
Kastner, M., Breuer-Jammali, M., Mahro, B. (1998). Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. [Article]. Applied and Environmental Microbiology, 64(1), 359-362.
Kawagoe, M., Hyakumura, K., Suye, S.I., Miki, K., Naoe, K. (1997) Application of bubble column fermentors to submerged culture of Schizophyllum commune for production of L-malic acid. Journal of Fermentation and Bioengineering. 84, 4, 333-336.
Khan, F. I., Husain, T., Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management 71, 95e122.
Kim, D. W., Kim, S. K., Lee, D. S. (2009). Relationship of pyrogenic polycyclic aromatic hydrocarbons contamination among environmental solid media. J Environ Monit, 11(6), 1244-1252.
Kim, H. S., Weber, W. J. (2003). Preferential surfactant utilization by a PAH-degrading strain: Effects on micellar solubilization phenomena. [Article]. Environmental Science &; Technology, 37(16), 3574-3580.
Kim, H. S., Weber, W. J. (2005a). Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation. [Article]. Environmental Science &; Technology, 39(7), 2274-2279.
Kim, H. S., Weber, W. J. (2005b). Polycyclic aromatic hydrocarbon behavior in bioactive soil slurry reactors amended with a nonionic surfactant. [Article]. Environmental Toxicology and Chemistry, 24(2), 268-276.
Komatsu, T., Omori, T., Kudana, T. (1993). Microbial degradation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture. Bioscience, Biotechnology, and Biochemistry, 57, 864–865.
Lafortune, I., Juteau, P., Deziel, E., Lepine, F., Beaudet, R., Villemur, R. (2009). Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem. Microb Ecol, 57(3), 455-468.
Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research/Reviews in Mutation Research, 636, 95–133.
Li, A., Jang, J. K., Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. [Article]. Environmental Science &; Technology, 37(13), 2958-2965.
Li, B., Zhang, T. (2010). Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. [Article]. Environmental Science &; Technology, 44(9), 3468-3473.
Li, X., Li, P., Lin, X., Zhang, C., Li, Q., Gong, Z. (2008). Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater, 150(1), 21-26.
Liang, Y., Britt, D. W., McLean, J. E., Sorensen, D. L., Sims, R. C. (2007). Humic acid effect on pyrene degradation: finding an optimal range for pyrene solubility and mineralization enhancement. Appl Microbiol Biotechnol, 74(6), 1368-1375.
Lin, T. C., Pan, P. T., Cheng, S. S. (2010). Ex situ bioremediation of oil-contaminated soil. J Hazard Mater, 176(1-3), 27-34.
Lin, Y., Cai, L. X. (2008). PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Mar Pollut Bull, 57(6-12), 703-706.
Llado, S., Covino, S., Solanas, A. M., Vinas, M., Petruccioli, M., D'Annibale, A. (2013). Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazard Mater, 248-249, 407-414.
Long, E. R., Ingersoll, C. G., Macdonald, D. D. (2006). Calculation and uses of mean sediment quality guideline quotients: A critical review. [Review]. Environmental Science &; Technology, 40(6), 1726-1736.
Lors, C., Damidot, D., Ponge, J. F., Perie, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut, 165, 11-17.
Lu, X., Zhang, T., Han-Ping Fang, H., Leung, K. M. Y., Zhang, G. (2011a). Biodegradation of naphthalene by enriched marine denitrifying bacteria. International Biodeterioration &; Biodegradation, 65(1), 204-211.
Lu, X. Y., Li, B., Zhang, T., Fang, H. H. (2012). Enhanced anoxic bioremediation of PAHs-contaminated sediment. Bioresour Technol, 104, 51-58.
Lu, X. Y., Zhang, T., Fang, H. H. (2011b). Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol, 89(5), 1357-1371.
Mackay, D., Shiu, W. Y., Ma, K. C. (1992). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, Vol. II. Lewis Publishers, Michigan, USA.Publishers, Michigan, USA.
Mahanty, B., Pakshirajan, K., Dasu, V. V. (2011). Understanding the Complexity and Strategic Evolution in PAH Remediation Research. Critical Reviews in Environmental Science and Technology, 41(19), 1697-1746.
Maini, G., Sharman, A. K., Knowles, C. J., Sunderland, G., Jackman, S. A. (2000). Electrokinetic remediation of metals and organics from historically contaminated soil. J. Chem. Technol. Biotechnol. 75(8), 657–664.
Malmon, D. V., Dunne, T., Reneau, S. L. (2002). Predicting the fate of sediment and pollutants in river floodplains. [Article]. Environmental Science &; Technology, 36(9), 2026-2032.
Means, J. C., Wood, S. G., Hassett, J. J., Banwart, W. L. (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14, 1524–1528.
Mollea, C., Bosco, F., Ruggeri, B. (2005). Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60, 636e643.
Moscoso, F., Teijiz, I., Deive, F. J., Sanroman, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour Technol, 119, 270-276.
Ohta, N., Park, Y. S., Yahiro, K., Okabe, M. (1995). Comparison of neomycin production from Streptomyces fradiae cultivation using soybean oil as the sole carbon source in an air-lift bioreactor and a stirred-tank reactor. Journal of Fermentation and Bioengineering. 79, 5, 443-448
Pazos, M., Rosales, E., Alcantara, T., Gomez, J., Sanroman, M. A. (2010). Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater, 177(1-3), 1-11.
Peng, R. H., Xiong, A. S., Xue, Y., Fu, X. Y., Gao, F., Zhao, W., et al. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev, 32(6), 927-955.
Qiu, Y. W., Zhang, G., Liu, G. Q., Guo, L. L., Li, X. D., Wai, O. (2009). Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 83(1), 60-66.
Rehmann, L., Prpich, G. P., Daugulis, A. J. (2008). Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor. Chemosphere, 73(5), 798-804.
Rockne, K. J., Strand, S. E. (1998). Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. [Article]. Environmental Science &; Technology, 32(24), 3962-3967.
Rogers, S. W., Ong, S. K., Kjartanson, B. H., Golchin, J., Stenback, G. A. (2002). Natural attenuation of polycyclic aromatic hydrocarbon-contaminated sites: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 6, 141–155.
Samanta, S. K., Singh, O. V., Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243-248.
Sayara, T., Borràs, E., Caminal, G., Sarrà, M., Sánchez, A. (2011). Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration &; Biodegradation, 65(6), 859-865.
Schmidt, S. N., Christensen, J. H., Johnsen, A. R. (2010). Fungal PAH-Metabolites Resist Mineralization by Soil Microorganisms. [Article]. Environmental Science &; Technology, 44(5), 1677-1682.
Sram, R. J., Binkova, B. (2000). Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997–1999. Environmental Health Perspectives, 108, 57–70.
Steinberg, S. M., Pignatello, J. J. Sawhney, B. L. (1987). Persistence of 1, 2-dibromoethane in soils: Entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 1201-1208.
Tabak, H. H., Lazorchak, J. M., Lei, L., Khodadoust, A. P., Antia, J. E., Bagchi, R., et al. (2003). Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: Bioavailability, biodegradability, and toxicity issues. Environmental Toxicology and Chemistry, 22(3), 473-482.
Talley, J. W., Ghosh, U., Tucker, S. G., Furey, J. S., Luthy, R. G. (2002). Particle-scale understanding of the bioavailability of PAHs in sediment. [Article]. Environmental Science &; Technology, 36(3), 477-483.
Teng, Y., Luo, Y., Sun, M., Liu, Z., Li, Z., Christie, P. (2010). Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresource Technology 101, 3437e3443.
Van Brummelen, T. C., Verweij, R. A., Wedzinga, S. A., VanGestel, C. A. M. (1996). Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32(2), 315–341.
Van Drooge, B. L., Lopez, J., Fernandez, P., Grimalt, J. O., Stuchlik, E. (2011). Polycyclic aromatic hydrocarbons in lake sediments from the High Tatras. Environ Pollut, 159(5), 1234-1240.
Viamajala, S., Peyton, B. M., Richards, L. A., Petersen, J. N. (2007). Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions. Chemosphere, 66(6), 1094-1106.
Walter, U., Beyer, M., Klein, J., Rehm, H.J. (1991). Degradation of pyrene by Rhodococcus sp. UW1. Applied Microbiology and Biotechnology, 34, 671–676.
Wang, F., Bu, Q., Xia, X., Shen, M. (2011). Contrasting effects of black carbon amendments on PAH bioaccumulation by Chironomus plumosus larvae in two distinct sediments: role of water absorption and particle ingestion. Environ Pollut, 159(7), 1905-1913.
Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil-A review. Journal of Plant Nutrition and Soil Science, 163, 229–248.
Xia, X., Wang, R. (2008). Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: Importance of the sediment–water interface. Environmental Toxicology and Chemistry, 27(1), 119-125.
Xia, X. H., Yu, H., Yang, Z. F., Huang, G. H. (2006). Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: effects of high sediment content on biodegradation. Chemosphere, 65(3), 457-466.
Ye, D., Akmai Siddiqi, M., Maccubbin, A. E., Kumar, S., Sikka, H. C. (1996). Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environmental Science and Technology, 30, 136–142.
You, J., Landrum, P. F., Lydy, M. J. (2006). Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. [Article]. Environmental Science &; Technology, 40(20), 6348-6353.
Yu, H.T. (2002). Environmental carcinogenic polycyclic aromatic hydrocarbons: Photochemistry and phototoxicity. J. Environ. Sci. Health C. 20(2), 149–183.
Yu, Y., Xu, J., Wang, P., Sun, H., Dai, S. (2009). Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River, China. J Hazard Mater, 165(1-3), 494-500.
Yuan, S. Y., Chang, B. V. (2007). Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. J Environ Sci Health B, 42(1), 63-69.
Yuan, S. Y., Chang, J. S., Yen, J. H., Chang, B. V. (2001). Biodegradation of phenanthrene in river sediment. Chemosphere, 43(3), 273-278.
Yuan, S. Y., Wei, S. H., Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. [Article]. Chemosphere, 41(9), 1463-1468.
Zein, M., Suidan, M., Venosa, A. (2006). Bioremediation of Groundwater Contaminated with Gasoline Hydrocarbons and Oxygenates Using a Membrane-Based Reactor. Environ. Sci. Technol. 40, 1997-2003.
Zhang, Y., Guo, C. S., Xu, J., Tian, Y. Z., Shi, G. L., Feng, Y. C. (2012). Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res, 46(9), 3065-3073.
Zhu, H. B., Aitken, M. D. (2010). Surfactant-Enhanced Desorption and Biodegradation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil. [Article]. Environmental Science &; Technology, 44(19), 7260-7265.
Zhu, H. B., Singleton, D. R., Aitken, M. D. (2010). Effects of Nonionic Surfactant Addition on Populations of Polycyclic Aromatic Hydrocarbon-Degrading Bacteria in a Bioreactor Treating Contaminated Soil. [Article]. Environmental Science &; Technology, 44(19), 7266-7271.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔