跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃健翔
研究生(外文):Jian Xiang Huang
論文名稱:利用拉曼光譜研究吡啶衍生物在Cu(100)上氮摻雜石墨烯的生成
論文名稱(外文):Study of N-doped graphene grown on Cu(100) from pyridine derivatives by using Raman spectroscope
指導教授:李佳任
指導教授(外文):Jia Ren Lee
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:石墨烯氮摻雜原位拉曼銅(100)超高真空化學氣相沉積法低能電子繞射
外文關鍵詞:GrapheneN-dopedin situ RamanCu(100)UHVCVDLEED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
氮摻雜石墨烯由於其費米面高於狄拉克點、能隙不為零、以及碳原子自旋密度與電荷分佈受氮摻雜影響而具有活性等各種特性,在許多產業與元件中如半導體、太陽能、感測器、鋰電池或燃料電池中有很大的應用潛力,因此製備氮摻雜石墨烯成長是一重要課題。本實驗在超高真空系統下,以原位拉曼光譜(in situ Raman spectrum)以及低能電子繞射儀(LEED)探究吡啶衍生物3,5-DBP與2,4-DBP氣相沈積在Cu(100)上氮摻雜石墨烯的生成。
石墨烯生成溫度與兩階段變溫的實驗顯示,當蒸鍍溫度達850K,在Cu(100)表面開始形成sp2碳聚合體,在1000K~1050K蒸鍍溫度,開始生成奈米摻氮石墨烯,並隨著蒸鍍溫度上升至1100K,可形成面積更大幾乎沒有缺陷的石墨烯,不過氮摻雜也大量減少。而由覆蓋度的實驗與LEED觀察得知石墨烯在銅上自限生長而生成單層多方向性的石墨烯,其主要是沿著四個方向生長。最後我們比較了蒸鍍3,5-DBP、2,4-DBP、間二碘苯在1100K的Cu(100)上所生成石墨烯的原位拉曼光譜,與文獻中轉移後的單層石墨烯拉曼光譜比較:G與G’峰皆較為藍移,G’峰寬比單層寬,G’對G強度比例比單層小。這現象主要來自石墨烯與銅基板交互作用所致,這也反應在變溫拉曼頻譜隨溫度的變化上。在1000K、1050K以及1100K的銅(100)上所形成之氮摻雜石墨烯,其G band溫度係數值並不受D band的存在而有顯著的變化。此研究顯示以3,5-DBP、2,4-DBP為先驅物,可在1100K的銅表面以超高真空化學氣相沉積生成石墨烯,在1050K下可產生摻氮石墨烯。

ABSTRACT

N-graphene shows different properties; for example, the Femi level is higher than Dirac point, band gap is not zero, and carbon is activated by neighbor nitrogen dopants which influences the spin density and charge distribution of carbon atoms. These make N-graphene promising for various applications such as semiconductors, solar cell, sensor, lithium ion batteries and electrocatalyst for fuel cell. Therefore, preparation of N-graphene growth is an important issue. In this work ,we study N-doped graphene grown from pyridine derivatives chemical vapor deposition on Cu(100) in ultra high vacuum system by using in situ Raman spectroscopy and low
energy electrondeflection(LEED).
In graphene generation temperature and a two-step variable temperature experiments, it shows that sp2 carbon cluster is formed while dosing temperature above 850K. Nano N-graphene is formed from dosing at 1000K to 1050K. It becomes larger and defectless when dosing temperature above 1100K, however it’s doping level is significant reduction. From coverage dependant and LEED observation, we found that graphene growth on Cu is self-limited, formed monolayer multi-orientation graphene, and mainly growing with four orientation. Finally, we found that our in situ Raman ratio IG’/IG is small as well as G and G’ band of monolayer graphene prepared from 3,5-DBP 2,4-DBP and 1,3-diidobenzene are blue shift compared to those monolayer graphene transferred in literatures. These phenomenon is mainly caused by the interaction between grapheme and copper substrate, the interaction also affect the Raman spectrum of temperature dependence. The value of temperature coefficients of the G band frequency of N-graphene grown on Cu(100) at 1000K 1050K and 1100K respectively, is not affected by the presence of D band. Our work shows that graphene can grown on Cu(100) surface at 1100K by ultra high vacuum chemical vapor deposition with 3,5-DBP,2,4-DBP as precursor, as well as N-graphene can grown at
1050K.

目錄
第一章 前言
1.1 簡介……………………………………………...……………………….. p1
1.2 氮摻雜石墨烯………………………………………………………….. p5

第二章 文獻回顧
2.1 氮摻雜石墨烯的製備……………………………..…………………... p10
2.1.1直接合成…………………………………………………..………... p10
2.1.2後合成處理…………………………………………………..……... p12
2.1.3化學氣相沉積法……………………………………………..……... p13
2.2 拉曼光譜……………………………………………….…...…………… p17
2.2.1 拉曼散射與原理…………………………………………….……... p17
2.2.2 石墨烯的拉曼光譜………………………………………….……... p18
2.2.3 晶格振動與拉曼活性……………………………………….……... p21
2.3石墨烯的檢測……………………………………………….…………... p23
2.3.1光學顯微鏡……………………………………………………..…... p23
2.3.2低能電子繞射儀………………………………………………..…... p24
2.3.3拉曼光譜………………………………………………………..…... p25
2.3.4 X光電子能譜…………………………………………………..…... p31
2.4研究動機……………………………………………………...……...…... p32



第三章 實驗儀器與實驗步驟………………………...……………. p36
3.1 實驗儀器………………………………………………………………… p36
3.2 製備石墨烯……………………………………………….…………….. p38
3.3 拉曼光譜處理步驟……………………………………….…………… p39

第四章 實驗結果與討論……………………………........................... p41
4.1 3,5DBP與2,4DBP之石墨烯生成溫度研究……………...………. p41
4.2 兩階段變溫生成製備石墨烯之研究………………………...…...... p46
4.3 3,5DBP不同覆蓋度的研究…………………………………………... p48
4.4 由LEED繞射圖形探討石墨烯在銅(100)上的生長…….……... p51
4.5 由變溫拉曼研究石墨烯的特性……………………….….…………. p55

第五章 結論與展望……………………………………………………. p67

參考文獻…………………………………………………………………… p68
附錄…………………………………………………………………………… p73

表目錄

表2-2-1. 石墨烯的主要拉曼特徵峰比較…………………………….……... p21
表4-5-1. 不同生長溫度之石墨烯拉曼訊號以高斯函數擬合後之位置、半高寬對溫度的關係以線性分析得到之斜率………………………….p63
表4-5-2. 各文獻中變溫拉曼實驗之G與G’溫度係數………………………. p64
表4-5-3. 各文獻以532nm雷射量測所得單層石墨烯拉曼特徵……………..p65
表附1 不同生長溫度之石墨烯D band以高斯函數擬合後之位置、半高寬以及對G band強度比例,對石墨烯溫度的關係以線性擬合後所得參數…………………………………………………………….p73
表附2 不同生長溫度之石墨烯G band以高斯函數擬合後之位置、半高寬,對石墨烯溫度的關係以線性擬合後所得參數…………………p74
表附3 不同生長溫度之石墨烯G’ band以高斯函數擬合後之位置、半高寬以及對G band強度比例,對石墨烯溫度的關係以線性擬合後所得參數…………………………………………………………….p75


圖目錄

圖1-1-1 sp2混成與碳的sp2鍵結示意圖:(a)sp2混成的能階圖;(b)碳sp2鍵結的能階圖;(c)碳sp2的電子雲示意圖…………….…………..p2
圖1-1-2 單層石墨烯的(a)晶格結構;(b)第一布里淵區…………………… p3
圖1-1-3 石墨烯的能帶結構以及在K點附近線性帶的放大圖…………… p3
圖1-1-4 (a)實空間中AB堆疊石墨烯的晶格結構上視圖,其單位晶胞如圖中菱形區塊,深色圓A1、B1表示底層碳原子,淺色圓A2、B2表示上層碳原子;(b)AB堆疊石墨烯的單位晶胞以及層間間距…………………………………………………………………..... p4
圖1-1-5 石墨烯的(a) AA堆疊示意圖;(b)亂層堆疊示意圖…………….… p4
圖1-1-6 AB堆疊雙層石墨烯的能帶結構與其K點放大示意圖…………… p5
圖1-1-7 雙閘極雙層石墨烯示意圖………………………………………….. p6
圖1-1-8 石墨烯應用於燃料電池與鋰離子電池(a)高自旋密度或高電荷密度的碳原子通常是活性催化位置;(b)在鋰離子電池充放電循環測試中,以摻氮石墨烯作為電極的電池電容量明顯提升………….. p7
圖1-1-9 摻氮石墨烯中主要有三種常見的鍵合結構吡啶氮(紅)、吡咯氮(藍)與石墨氮(綠) ……………………………………………………p7

圖2-1-1 直接合成摻氮石墨烯:(a)析出成長示意圖;(b) 以四氯化碳與氮化鋰溶劑熱法合成摻氮石墨烯示意圖;(c)以XPS檢測電弧放電法在氨氣環境所生成之摻氮石墨烯……………………………..... p11
圖2-1-2 在氨氣環境於800~1000℃退火熱處理之氮摻雜結構…………... p12
圖2-1-3 以鎳為基板製備石墨烯,不同的降溫速率導致的不同層數…….. p15
圖2-1-4 在鎳與銅基板上不同的石墨烯生長機制………………………… p15
圖2-1-5 甲烷與氨氣的混合前趨物在(a)鎳;(b)銅上生成氮摻雜石墨烯的XPS檢測圖………………………………………………………… p16
圖2-1-6 藉由 (a)吡啶與 (b)丙烯腈 在鉑表面製備生成氮摻雜石墨烯的模型示意圖…………………………………………………………p16
圖2-2-1 瑞利散射與拉曼散射示意圖………………………………….….... p18
圖2-2-2 計算所得石墨烯六條聲子分支的散射關係圖…………………… p20
圖2-2-3 石墨烯拉曼光譜主要特徵峰散射示意圖:(a) G band (b) G’ band (c) D band………………………………………………………….... p20
圖2-2-4 石墨烯中碳的運動模式:(a) G band;(b)D band……………..…...p21
圖2-3-1 石墨烯對比度隨著入射光波長與二氧化矽厚度而變化的色彩圖…………………………………………………………………… p22
圖2-3-2 以光學顯微鏡觀察石墨烯 (a)以白光照射單層至雙層石墨烯沿黃線掃描得到藍線穿透率;(b)石墨烯層數與光穿透率的關係…... p23
圖2-3-3 低能電子繞射儀構造示意圖…………………………….…….…... p24
圖2-3-4 以雙層石墨烯電子能帶的分裂解釋G’ band的變寬……………... p25
圖2-3-5 單層石墨烯在各種基板上的拉曼光譜,包含磊晶在碳化矽基板上的單層石墨烯拉曼光譜……………………………………..…........ p27
圖2-3-6 電荷摻雜對石墨烯拉曼特徵的影響……………………………… p27
圖2-3-7 石墨烯拉曼特徵隨拉伸應變而紅移………………….…………..... p28
圖2-3-8 以非諧聲子效應研究拉曼特徵隨溫度的變化………………..….... p29
圖2-3-9 石墨烯G band頻率隨溫度紅移的程度與缺陷密度的關係…….... p29
圖2-3-10 石墨烯與摻氮石墨烯的高解析XPS頻譜,N1表示吡啶氮,N2表示吡咯氮,N3表示石墨氮………………………………………p30


圖3-1-1 樣品放置夾的設計與熱電耦溫度探測之裝置………………..….… p37
圖3-1-2 表面拉曼光譜儀配置圖……………………………………..…….… p37
圖3-2-1 銅(100)的LEED圖形(beam energy=130eV)………………………. p38
圖3-3-1 使用SpectraMax將所擷取散射光譜經由(a)比對;(b)去除射線與壞點;(c)校正;(d)轉換拉曼位移…………………………………… p39
圖3-3-2 將扣除銅背景後的訊號以高斯函數擬合,可得波峰位置、半高寬、波峰積分面積……………………………………………………p40

圖4-1-1 在不同溫度的Cu(100)上分別蒸鍍3,5-DBP與2,4-DBP,待Cu(100)降溫至100K後所測得之拉曼光譜…………………………p42
圖4-1-2 3,5-DBP蒸鍍在700K的Cu(100)上降溫至100K量測之LEED影像( Beam Energy 130eV)…………………………………………….. p42
圖4-1-3 G與G’ band波峰位置及峰寬隨蒸鍍溫度的變化。………………… p44
圖4-1-4 (a) G’ band對G band強度比例隨蒸鍍溫度的變化;(b) D band對G band強度比例隨蒸鍍溫度的變化。……………………………… p44
圖4-2-1 在不同溫度蒸鍍3,5-DBP並退火1100K,所測得拉曼光譜訊號…. p47
圖4-2-2 3,5-DBP蒸鍍在700K的Cu(100)上降溫至100K量測拉曼光譜後,再退火1100K後降溫至100K量測之LEED影像。(Beam Energy 166eV) …………………………………………….………… p47
圖4-3-1 在1100K的Cu(100)上蒸鍍不同曝露量的3,5-DBP所測得拉曼頻譜…………………………………………………………………….. p49
圖4-3-2 在1050K的Cu(100)上蒸鍍不同曝露量的3,5-DBP所測得拉曼頻譜……………………………………………………………………. p49
圖4-3-3 在1100K的Cu(100)上蒸鍍不同曝露量的3,5-DBP,G band強度隨曝露量的變化…………………………………………………….. p50
圖4-3-4 分別在1100K(三角形)、1050K(方形) 的Cu(100)上蒸鍍不同曝露量的3,5-DBP,其G’對G強度比例不隨曝露量變化………………p50
圖4-4-1 3,5-DBP蒸鍍在1100K的Cu(100)上降溫至100K量測之LEED影像。(Beam Energy 160eV)…………………………………………p52
圖4-4-2 在銅(100)上主要有六種方向的石墨烯,彼此角度相差15°的倍數…………………………………………………………………….p52
圖4-5-1 在約1100K的Cu(100)上蒸鍍6L的 (a) 3,5-DBP,與(b) 2,4-DBP,製備完成並降回液氮溫度後,再加熱石墨烯至各溫度穩定所量測之拉曼光譜…………………………………………………………..p56
圖4-5-2 在約1050K的Cu(100)上蒸鍍6L的 (a) 3,5-DBP,與(b) 2,4-DBP,製備完成並降回液氮溫度後,再加熱石墨烯至各溫度穩定所量測之拉曼光譜…………………………………………………………..p57
圖4-5-3 在約1000K的Cu(100)上蒸鍍6L的 (a) 3,5-DBP,與(b) 2,4-DBP,製備完成並降回液氮溫度後,再加熱石墨烯至各溫度穩定所量測之拉曼光譜………………………………………………………….. p58
圖4-5-4 在氫氣5×10-4torr輔助下蒸鍍間二碘苯於1100K的Cu(100)上所生成的石墨烯在不同的溫度下所測得之拉曼光譜………………..p59
圖4-5-5 以3,5-DBP在三種溫度蒸鍍所生成之石墨烯以及在1100K蒸鍍間二碘苯生成石墨烯,於各溫度所得拉曼頻譜分析…………………p62
圖4-5-6 G band溫度係數與石墨烯缺陷密度關係圖………………………..p62

Reference:
[1] L.M. Malard et al., Raman spectroscopy in graphene, Physics Reports,473,51.(2009)
[2] Roberto Muñoz et al., Review of CVD Synthesis of Graphene,Chem. Vap. Deposition,19,297.(2013)
[3] 呂俊頡,自我對準閘極軟性石墨烯電晶體以及雙層單晶石墨烯超晶格之研究,國立清華大學電子工程研究所博士論文(2013)
[4] 呂俊頡,以化學氣相沈積法控制單層與雙層石墨於圖紋化矽基板之成長,國立清華大學電子工程研究所碩士論文(2009)
[5] A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers,Physical Review Letters,97,187401.(2006)
[6] 游慈卉,使用顯微拉曼光譜儀研究多層石墨烯之氫化反應,國立清華大學物理學系應用物理組碩士論文(2011)
[7] S. Y. ZHOU et al., Substrate-induced bandgap opening in epitaxial graphene,Nature Materials,6,770.(2007)
[8] Yuanbo Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene,Nature Lett.,459,820.(2009)
[9] Liangti Qu et al., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells,ACS Nano,4,1321.(2010)
[10] L. S. Panchakarla et al., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene,Adv. Mater,21,4726.(2009)
[11] Lipeng Zhang et al., Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, J. Phys. Chem. C,115,11170.(2011)
[12] Haibo Wang et al., Review on Recent Progress in Nitrogen-Doped Graphene Synthesis Characterization and Its Potential Applications,ACS Catal.,2,781.(2012)
[13] Arava Leela Mohana Reddy, Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application,ACS Nano,4,6337.(2010)
[14] Chaohua Zhang et al., Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources,Adv. Mater,23,1020.(2011)
[15] John W. May, Platinum surface LEED rings,Surface Science,17,267.(1969)
[16] Dehui Deng et al., Toward N-Doped Graphene via Solvothermal Synthesis, Chem. Mater.,23,1188.(2011)
[17] Beidou Guo et al., Controllable N-Doping of Graphene,Nano Lett.,10,4975.(2010)
[18] Dongsheng Geng et al., High oxygen-reduction activity and durability of nitrogen-doped graphene,Energy Environ. Sci.,4,760.(2011)
[19] Yung-Chang Lin et al., Controllable graphene N-doping with ammonia plasma,Appl Phys Lett.,96,133110.(2010)
[20] Xuesong Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,Science,324,1312. (2009)
[21] Zhiqiang Luo et al., Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property,J. Mater. Chem.,21,8038.(2011)
[22] Chong-an Di et al., Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors,Adv. Mater., 20,3289.( 2008)
[23] 蔡立偉,以化學氣相沉積法成長單層石墨烯及其應用於可撓式透明場效電晶體之研究,國立清華大學材料科學與工程研究所碩士論文(2012)
[24] Zhong Jin et al., Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets,ACS Nano,5,4112.(2011)
[25] Keun Soo Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706. (2009)
[26] Reina, A. et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 9, 30. (2009)
[27] Qingkai Yu et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, 93, 113103.(2008)
[28] Xuesong Li et al., Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling, Nano Lett., 9, 4268. (2009)
[29] Pei Zhao et al., Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol,J. Phys. Chem. C,117,10755.(2013)
[30] Dacheng Wei et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties, Nano Lett., 9, 1752. (2009)
[31] Gaku Imamura and Koichiro Saiki, Synthesis of Nitrogen-Doped Graphene on Pt(111) by Chemical Vapor Deposition, J. Phys. Chem. C, 115, 10000(2011)
[32] 蕭如珀、楊信男,發現拉曼散射,物理雙月刊,33,1,126(2011)
[33] 張好裕,奈米金對單層石墨烯拉曼光譜影響之研究,國立中正大學物理所碩士論文(2011)
[34] Matthew J. Allen et al., Honeycomb Carbon: A Review of Graphene, Chem. Rev.,110, 132.(2010)
[35] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61, 20. (2000)
[36] Yunzhou Xue et al., Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition,J. Am. Chem. Soc.,134,11060.(2012)
[37] Stephanie Reich and Christian Thomsen, Raman spectroscopy of graphite,Phil. Trans. R. Soc. Lond. A ,362,2271.(2004)
[38] L. M. Malard et al., Observation of Distinct Electron-Phonon Couplings in Gated Bilayer Graphene,Physical Review Lett.,101,257401.(2008)
[39] P. Blake et al., Making graphene visible, Applied Physics Letters, 91, 063124. (2007)
[40] R. R. Nair et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, 320, 1308.(2008)
[41] 劉承翰,Co奈米結構生長在graphene-Pt(111)上的結構與磁性研究,國立中山大學物理學系研究所碩士論文(2012)
[42] 蘇怡航,反式耦氮苯硫醇吸附於銀-鍺表面(111)的表面曼光譜研究,國立高雄師範大學物理系研究所碩士論文(2010)
[43] Yufeng Hao, Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy, Small, 6, 195.(2010)
[44] Ying ying Wang et al., Raman Studies of Monolayer Graphene: The Substrate Effect, J. Phys. Chem. C, 112, 10637.(2008)
[45] Ang-Yu Lu et al., Decoupling of CVD graphene by controlled oxidation of recrystallized Cu, RSC Adv., 2, 3008.( 2012)
[46] Alex W. Robertson et al., Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper, Nano Lett.,11,1182.(2011)
[47] P. Sutter et al., Electronic Structure of Few-Layer Epitaxial Graphene on Ru(0001),Nano Lett.,9,2654.(2009)
[48] A. DAS et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature Nanotechnology, 3, 210. (2008)
[49] Zhen Hua Ni et al., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening,ACS Nano, 2, 2301.(2008)
[50] Jingjing Lin et al., Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets, Physical Review B, 83, 125430. (2011)
[51] Nagisa Hosoya et al., Temperature dependence of the Raman spectra of polycrystalline graphene grown by chemical vapor deposition, Applied Physics Letters, 105, 023108.(2014)
[52] L. G. Cançado et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy,Applied Physics Letters, 88, 163106.(2006)
[53] 成大化學系林榮良老師實驗室提供的研究結果。
[54] 謝月桂,利用掃描式穿隧顯微鏡研究間二碘苯在銅(100)表面生成石墨烯的行為,北科大有機高分子研究所碩士論文(2014)
[55] Yui Ogawa et al., Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films, J. Phys. Chem. Lett., 3, 219.(2012)
[56] Joseph M. Wofford et al., Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects, Nano Lett.,10,4890.( 2010)
[57] 蘇怡航2013年3-6月於中央研究院原子分子所的研究結果。
[58] Dattatray J Late et al.,Temperature effects on the Raman spectra of graphenes: dependence on the number of layers and doping, J. Phys.: Condens. Matter, 23, 055303. (2011)
[59] L M Malard et al., Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study,J. Phys.: Condens. Matter,22,334202.(2010)
[60] Chun-Chung Chen et al., Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene,Physical Review B,85,035431.(2012)
[61] Haiqing Zhou et al., Raman scattering of monolayer graphene: the temperature and oxygen doping effects,J. Phys. D: Appl. Phys.,44,185404.(2011)
[62] I. Calizo et al., Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett.,7,2645.(2007)
[63] Zhen Hua Ni et al., The effect of vacuum annealing on graphene,J. Raman Spectrosc.,41,479.(2010)
[64] Zhenhua Ni et al., Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy, Physical Review B, 77, 235403.(2008)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文