跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李珮琪
論文名稱:以內容分析法分析線上評論之行動應用軟體的品質
論文名稱(外文):Applying Contnet Analysis to Analyze the Quality of Mobile Applications from Online Reviews
指導教授:何淑君何淑君引用關係
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:資訊教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:行動應用軟體線上評論電子化口碑品質特徵
外文關鍵詞:Mobile AppOnline Reviewse-WOMQuality Attributes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
行動裝置與行動網路越來越普及,使用者在使用的過程中會產生許多的資料,這些資料可以有效的進行使用者偏好的分析。但是,一般研究員並無法輕易獲得這些資訊來進行研究。因此,本研究利用較易獲得的線上資訊進行探討,也就是目前消費者最常使用的線上評論。本研究針對Apple App Store Taiwan的行動應用軟體線上評論進行分析,並以內容分析法進行評論斷詞的分類。在本研究中,評論會將其送至斷詞系統進行斷詞,斷詞後的結果用人力的方式,進行同義詞的分類產生分析單位(unit of analysis),接著再根據類目定義,將分析單位分類到類目(categories)當中,產生最後的行動應用軟體品質特徵。其中包含可得性、有用性、易用性、社會互動、娛樂、認知愉快、認知價格以及系統品質、服務品質、便利性、資訊品質。
As the wide spread of the mobile devices and mobile network services, a huge amount of data will be generated through out using process by the users, and these data could be used effectively for the analysis of user preference. However, average researchers can’t obtain these data easily. Therefore, this study analyzes the online apps reviews of Apple App Store Taiwan, which is easier to acquire. We retrieved the reviews and used word segmentation system first and then manually categorized the unit of analysis into the appropriate categories. Hence, we generated the mobile applications quality attributes, including Perceived service availability, Perceived usefulness, Perceived ease of use, Social interactions, Entertainment, Perceived enjoyment, Perceived price, System quality, Service quality, Convenience, Information quality.
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 3
第三節 研究範圍與限制 4
第四節 論文架構 6
第二章 文獻探討 7
第一節 行動應用軟體 7
第二節 軟體品質 13
第三節 口碑行銷 16
第四節 線上口碑與線上評論 20
第三章 研究方法 27
第一節 內容分析法 27
第二節 類目建構與分析單位之界定 30
第三節 中文斷詞系統 33
第四節 中文斷詞與內容編碼 35
第五節 中文斷詞與品質評價 38
第六節 信、效度分析 40
第四章 資料分析 41
第一節 資料蒐集 41
第二節 軟體評論斷詞 43
第三節 斷詞分類與篩選 45
第四節 斷詞的內容編碼 46
第五節 分析結果 54
第五章 結論與建議 57
第一節 討論 57
第二節 研究貢獻 59
第三節 研究限制與未來研究建議 60
參考文獻 61

表2-1 行動應用軟體相關研究整理 9
表2-2 行動服務相關研究整理 12
表2-3 傳統口碑相關研究整理 18
表2-4 線上評論相關研究整理 24
表3-1 類目定義整理 31
表4-1 行動應用軟體評論數統計 42
表4-2 斷詞結果之詞性數量統計 45
表4-3 分析單位結果數量統計 48
表4-4 類目及分析單位的分類結果 51

圖2-1 ISO 25010軟體品質模型 14
圖2-2 ISO 25010使用品質模型 15
圖3-1 內容分析法流程圖 28
圖3-2 內容編碼步驟 36
圖3-3 分類結果統整 37
圖3-4 品質評價步驟 38
圖4-1 社交類熱門免費行動應用軟體之排行 41
圖4-2 未分割評論斷詞結果 43
圖4-3 斷詞結果儲存方式 44


Akter, S., D’Ambra, J., & Ray, P. (2013). Development and validation of an instrument to measure user perceived service quality of mHealth. Information & Management, 50(4), 181-195.
Arndt, J. (1967). Role of Product-related Conversations in the Diffusion of a New Product. Journal of Marketing Research, 4(3), 291-295.
Azuma, M. (1996). Software Products Evaluation System: Quality Models, Metrics and Processes—International Standards and Japanese Practice. Information and Software Technology, 38(3), 145-154.
Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 Quality Model for Evaluation of B2B Applications. Information and Software Technology, 51(3), 599-609.
Berg, B. L. (1998). Qualitative Research Methods for the Social Sciences - Third Edition: Allyn & Bacon.
Bickart, B., & Schindler, R. M. (2001). Internet Forums as Influential Sources of Consumer Information. Journal of Interactive Marketing, 15(3), 31-40.
Blodgett, J. G., Granbois, D. H., & Walters, R. G. (1993). The Effects of Perceived Justice on Complainants' Negative Word-of-mouth Behavior and Repatronage Intentions. Journal of Retailing, 69(4), 399-428.
Bone , F. P. (1992). Determinants of Word-Of-mouth Communications During Product Consumption. Advances in Consumer Research, 19(1), 579-583.
Bone, P. F. (1995). Word-of-mouth Effects on Short-term and Long-term Product Judgments. Journal of Business Research, 32(3), 213-223.
Brinton Anderson, B., Bajaj, A., & Gorr, W. (2002). An Estimation of the Decision Models of Senior IS Managers When Evaluating the External Quality of Organizational Software. Journal of Systems and Software, 61(1), 59-75.
Brown, J. J., & Reingen, P. H. (1987). Social Ties and Word-of-Mouth Referral Behavior. Journal of Consumer Research, 14(3), 350-362.
Buttle, F. A. (1998). Word of mouth: Understanding and Managing Referral Marketing. Journal of Strategic Marketing, 6(3), 241-254.
Chang, S. E., & Pan, Y.-H. V. (2011). Exploring Factors Influencing Mobile Users' Intention to Adopt Multimedia Messaging Service. Behaviour & Information Technology, 30(5), 659-672.
Chang, T.-Z., & Wildt, A. (1994). Price, Product Information, and Purchase Intention: An Empirical Study. Journal of the Academy of Marketing Science, 22(1), 16-27.
Chatterjee, S., Chakraborty, S., Sarker, S., Sarker, S., & Lau, F. Y. (2009). Examining the Success Factors for Mobile Work in Healthcare: A Deductive Study. Decision Support Systems, 46(3), 620-633.
Chen, C. C., & Tseng, Y.-D. (2011). Quality Evaluation of Product Reviews Using an Information Quality Framework. Decision Support Systems, 50(4), 755-768.
Chen, L., Meservy, T. O., & Gillenson, M. (2012). Understanding Information Systems Continuance for Information-Oriented Mobile Applications. Communications of the Association for Information Systems, 30(9), 127-146.
Cheung, C. M.-Y., Sia, C.-L., & Kuan, K. K. Y. (2012). Is This Review Believable? A Study of Factors Affecting the Credibility of Online Consumer Reviews from an ELM Perspective. Journal of the Association for Information Systems, 13(8), 618-635.
Cheung, C. M. K., & Thadani, D. R. (2012). The Impact of Electronic Word-of-mouth Communication: A Literature Analysis and Integrative Model. Decision Support Systems, 54(1), 461-470.
Cui, G., Lui, H.-K., & Guo, X. (2012). The Effect of Online Consumer Reviews on New Product Sales. International Journal of Electronic Commerce, 17(1), 39-58.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
Decker, R., & Trusov, M. (2010). Estimating Aggregate Consumer Preferences from Online Product Reviews. International Journal of Research in Marketing, 27(4), 293-307.
Dromey, R. G. (1995). A Model for Software Product Quality. Software Engineering, IEEE Transactions on, 21(2), 146-162.
East, R., Hammond, K., & Lomax, W. (2008). Measuring the Impact of Positive and Negative Word of Mouth on Brand Purchase Probability. International Journal of Research in Marketing, 25(3), 215-224.
East, R., Hammond, K., & Wright, M. (2007). The Relative Incidence of Positive and Negative Word of Mouth: A Multi-Category Study. International Journal of Research in Marketing, 24(2), 175-184.
Eighmey, J., & McCord, L. (1998). Adding Value in the Information Age: Uses and Gratifications of Sites on the World Wide Web. Journal of Business Research, 41(3), 187-194.
Fang, H., Zhang, J., Bao, Y., & Zhu, Q. (2013). Towards Effective Online Review Systems in the Chinese Context: A Cross-cultural Empirical Study. Electronic Commerce Research and Applications, 12(3), 208-220.
Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the Quality of Predictions Using Textual Information in Online User Reviews. Information Systems, 38(1), 1-15.
Gao, S., Krogstie, J., Thingstad, T., & Tran, H. (2015). A Mobile Service Using Anonymous Location-based Data: Finding Reading Rooms. International Journal of Information and Learning Technology, 32(1), 32-44.
Garg, R., & Telang, R. (2013). Inferring App Demand from Publicly Available Data. MIS Quarterly, 37(4), 1253-1264.
Gartner. (2014a). Gartner Says by 2017, Mobile Users Will Provide Personalized Data Streams to More Than 100 Apps and Services Every Day. Retrieved 7/22, 2015, from http://www.gartner.com/newsroom/id/2654115
Gartner. (2014b). Gartner Survey Reveals That 73 Percent of Organizations Have Invested or Plan to Invest in Big Data in the Next Two Years. Retrieved 7/23, 2015, from http://www.gartner.com/newsroom/id/2848718
Grönroos, C. (1984). A Service Quality Model and its Marketing Implications. European Journal of Marketing, 18(4), 36-44.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic Word-Of-Mouth Via Consumer-opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet? Journal of Interactive Marketing, 18(1), 38-52.
Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of Word-of-mouth and Product-attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective. Journal of Consumer Research, 17(4), 454-462.
Hong, S.-J., & Tam, K. Y. (2006). Understanding the Adoption of Multipurpose Information Appliances: The Case of Mobile Data Services. Information Systems Research, 17(2), 162-179.
Horgan, G., & Khaddaj, S. (2009). Use of an Adaptable Quality Model Approach in a Production Support Environment. Journal of Systems and Software, 82(4), 730-738.
Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of Online Reviews: An Analysis of Ratings, Readability, and Sentiments. Decision Support Systems, 52(3), 674-684.
Hu, N., Koh, N. S., & Reddy, S. K. (2014). Ratings Lead You to the Product, Reviews Help You Clinch It? The Mediating Role of Online Review Sentiments on Product Sales. Decision Support Systems, 57(0), 42-53.
Huang, A. H., & Yen, D. C. (2013). Predicting the Helpfulness of Online Reviews—A Replication. International Journal of Human-Computer Interaction, 29(2), 129-138.
ISO/IEC. (2001). ISO/IEC 9126-1:2001 Software Engineering — Product Quality —Part 1:Quality Model
ISO/IEC. (2008). ISO/IEC 25010: Software Engineering-Software Product Quality Requirements and Evaluation (SQuaRE) Quality model.
Jabr, W., & Zhiqiang, Z. (2014). Know Yourself and Know Your Enemy: An Analysis of Firm Recommendations and Consumer Reviews in A Competitive Environment. MIS Quarterly, 38(3), 635-654.
Jensen, M. L., Averbeck, J. M., Zhang, Z., & Wright, K. B. (2013). Credibility of Anonymous Online Product Reviews: A Language Expectancy Perspective. Journal of Management Information Systems, 30(1), 293-324.
Kassarjian, H. H. (1977). Content Analysis in Consumer Research. Journal of Consumer Research, 4(1), 8-18.
Khalid, H., Shihab, E., Nagappan, M., & Hassan, A. E. (2015). What Do Mobile App Users Complain About? Software, IEEE, 32(3), 70-77.
Kim, J., & Gupta, P. (2012). Emotional Expressions in Online User Reviews: How They Influence Consumers' Product Evaluations. Journal of Business Research, 65(7), 985-992.
Kolbe, R. H., & Burnett, M. S. (1991). Content-analysis Research: An Examination of Applications with Directives for Improving Research Reliability and Objectivity. Journal of Consumer Research, 18(2), 243-250.
Korfiatis, N., García-Bariocanal, E., & Sánchez-Alonso, S. (2012). Evaluating Content Quality and Helpfulness of Online Product Reviews: The Interplay of Review Helpfulness vs. Review Content. Electronic Commerce Research and Applications, 11(3), 205-217.
Krippendorff, k. (1990). Content Analysis: An Introduction to Its Methodology.: Beverly Hills, CA: Sage.
Lee, S., Shin, B., & Lee, H. G. (2009). Understanding Post-adoption Usage of Mobile Data Services: The Role of Supplier-side Variables. Journal of the Association for Information Systems, 10(12), 860-888.
Lim, S. L., Bentley, P. J., Kanakam, N., Ishikawa, F., & Honiden, S. (2015). Investigating Country Differences in Mobile App User Behavior and Challenges for Software Engineering. Software Engineering, IEEE Transactions on, 41(1), 40-64.
Lu, Y., Zhang, L., & Wang, B. (2009). A Multidimensional and Hierarchical Model of Mobile Service Quality. Electronic Commerce Research and Applications, 8(5), 228-240.
Ma, W.-Y., & Chen, K.-J. (2003). A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction. Paper presented at the Proceedings of the second SIGHAN workshop on Chinese language processing - Volume 17, Sapporo, Japan.
Ma, X., Khansa, L., Deng, Y., & Kim, S. S. (2013). Impact of Prior Reviews on the Subsequent Review Process in Reputation Systems. Journal of Management Information Systems, 30(3), 279-310.
Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I., . . . Sukhatme, G. S. (2010). An Architecture-driven Software Mobility Framework. Journal of Systems and Software, 83(6), 972-989.
Mojica, I. J., Adams, B., Nagappan, M., Dienst, S., Berger, T., & Hassan, A. E. (2014). A Large-scale Empirical Study on Software Reuse in Mobile Apps. Software, IEEE, 31(2), 78-86.
Mudambi, S. M., & Schuff, D. (2010). What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com. MIS Quarterly, 34(1), 185-200.
Naccarato, J. L., & Neuendorf, K. A. (1998). Content Analysis as a Predictive Methodology: Recall, Readership, and Evaluations of Business-to-Business Print Advertising. Journal of Advertising Research, 38(3), 19-33.
Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of Information and System Quality: An Empirical Examination Within the Context of Data Warehousing. Journal of Management Information Systems, 21(4), 199-235.
Neuendorf, K. A. (2002). The Content Analysis Guidebook: SAGE Publications, Inc.
Pan, Y., & Zhang, J. Q. (2011). Born Unequal: A Study of the Helpfulness of User-generated Product Reviews. Journal of Retailing, 87(4), 598-612.
Park, D.-H., & Lee, J. (2009). eWOM Overload and Its Effect on Consumer Behavioral Intention Depending on Consumer Involvement. Electronic Commerce Research and Applications, 7(4), 386-398.
Picazo-Vela, S., Chou, S. Y., Melcher, A. J., & Pearson, J. M. (2010). Why Provide an Online Review? An Extended Theory of Planned Behavior and the Role of Big-Five Personality Traits. Computers in Human Behavior, 26(4), 685-696.
Pu, Y.-H., Chiu, P.-S., Chen, T.-S., & Huang, Y.-M. (2015). The Design and Implementation of a Mobile Library App System. Library Hi Tech, 33(1), 15-31.
Racherla, P., & Friske, W. (2012). Perceived ‘Usefulness’ of Online Consumer Reviews: An Exploratory Investigation Across Three Services Categories. Electronic Commerce Research and Applications, 11(6), 548-559.
Rummel, R. J. ( 1976). The Conflict Helix Understanding Conflict and War: The Conflict Helix (Vol. 2): Beverly Hills, CA: Sage Publications.
Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis of Unlabeled Program Modules With Semisupervised Clustering. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 37(2), 201-211.
Smura, T., Kivi, A., & Töyli, J. (2009). A Framework for Analysing The Usage of Mobile Services. info, 11(4), 53-67.
Song, J., Kim, J., Jones, D. R., Baker, J., & Chin, W. W. (2014). Application Discoverability and User Satisfaction in Mobile Application Stores: An Environmental Psychology Perspective. Decision Support Systems, 59(0), 37-51.
Tirunillai, S., & Tellis, G. J. (2014). Mining Marketing Meaning from Online Chatter: Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. Journal of marketing research, 51(4), 463-479.
Tracy, K. W. (2012). Mobile Application Development Experiences on Apple's iOS and Android OS. Potentials, IEEE, 31(4), 30-34.
Verkasalo, H. (2009). Contextual Patterns in Mobile Service Usage. Personal and Ubiquitous Computing, 13(5), 331-342.
Weber, R. P. (1990). Basic Content Analysis, Second Edition: Sara Miller McCune, Sage Publications, Inc.
Wilson, W. R., & Peterson, R. A. (1989). Some Limits on the Potency of Word-Of-Mouth Information. Advances in Consumer Research, 16, 23-29.
Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85-102.
Yale, L., & Venkatesh, A. (1986). Toward The Construct Convenience in Consumer Research. Advances in Consumer Research, 13(1), 403-408.
Zhang, K. Z. K., Zhao, S. J., Cheung, C. M. K., & Lee, M. K. O. (2014). Examining the Influence of Online Reviews on Consumers' Decision-making: A Heuristic–systematic Model. Decision Support Systems, 67, 78-89.
Zhang, R., & Tran, T. (2010). Helpful or Unhelpful: A Linear Approach for Raking Product Reviews. Journal of Electronic Commerce Research, 11(3), 220-230.
Zhao, L., Lu, Y., Zhang, L., & Chau, P. Y. K. (2012). Assessing the Effects of Service Quality and Justice on Customer Satisfaction and the Continuance Intention of Mobile Value-added Services: An Empirical Test of a Multidimensional Model. Decision Support Systems, 52(3), 645-656.
Zhou, T. (2013). An Empirical Examination of Continuance Intention of Mobile Payment Services. Decision Support Systems, 54(2), 1085-1091.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 3. 李宜曄 林詠能,民97,十三行博物館導覽服務滿意度與重遊意願研究,博物館學季刊,22(1):93-106。
2. 13. 曹欽榮,民96。展示空間、文本與社會實踐,博物館學季刊,21(3):63-70。
3. 10. 吳國淳,民96。博物館學習之詮釋及溝通內涵探究,博物館學季刊,21(4):81-89。
4. 2. 冉挹芬,民96。展示技術與教育成效,博物館學季刊,21(3):93-99。
5. 8. 林婷筠,民96。奇幻色彩的魔力:試評「妮基的異想世界」,博物館學季刊,21(3):105-108。
6. 12. 耿鳳英,民97。懷舊與創新:21世紀歷史展示新定位,博物館學季刊,22(3):39-54。
7. 5. 林明美,民97。臺灣公立博物館功能趨勢與組織架構初探:以臺北縣四座博物館為例,博物館學季刊,22(1):49-76。
8. 1. 王嵩山,民96。揭露的與隱藏的:台灣博物館展示研究的回顧與展望,博物館學季刊,21(3):5-37。
9. 11. 柯秀雯,民96。科技藝術的快感、知識水平的低落,博物館學季刊,21(3):101-104。
10. 14. 陳奕良,民96。從博覽會到多樣性展現,看見台灣的方式,博物館學季刊,21(3):75-81。
11. 16. 許善惠,民96。科學展示的社會文化意涵,博物館學季刊,21(3):83-86。
12. 17. 黃慧珍,民97。博物館行銷實務:以國立自然科學博物館電子報發展為例,博物館學季刊,22(2):79-93。
13. 18. 蔡幸伶,民96。藝術作品的展示空間與設計實務,博物館學季刊,21(2):51-65。
14. 19. 鄭惠英 譯,Frans Schouten,民77。心理學與展示設計小記,博物館學季刊。
15. 20. 鄭惠英,民82。展示設計新說,博物館學季刊。
 
無相關點閱論文