跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王富民
研究生(外文):Wang Fu-Min
論文名稱:氮化鋁鎵/氮化鎵摻雜通道場效電晶體之研究
論文名稱(外文):Investigation of AlGaN/GaN Doping-Channel High Electron Mobility Transistors
指導教授:蔡榮輝蔡榮輝引用關係
指導教授(外文):Tsai Jung-Hui
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:氮化鋁鎵/氮化鎵高電子遷移率電晶體摻雜通道雜質散射
外文關鍵詞:AlGaN/GaNhigh electron mobility transistordoping channelimpurity scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁鎵/氮化鎵摻雜通道場效電晶體之研究

王富民* 蔡榮輝**

國立高雄師範大學電子工程學系碩士班

摘要

本論文中主要建造並探討氮化鋁鎵/氮化鎵高電子遷移率電晶體之通道摻雜的影響,以及摻雜厚度對於氮化鋁鎵/氮化鎵摻雜通道高電子遷移率電晶體特性之影響。探討及分析的結構分別為:
(1)氮化鋁鎵/氮化鎵在具有200埃氮化鎵摻雜通道之高電子遷移率電晶體(元件A)。
(2)氮化鋁鎵/氮化鎵無摻雜通道之高電子遷移率電晶體(元件B)。
(3)氮化鎵摻通道區域分別為195、190、175、150、100、50埃且距離氮化鋁鎵/氮化鎵異質接面之間隙層分別為5、10、25、50、100、150埃之高電子遷移率電晶體(元件C、D、E、F、G、H)。
元件A的製作是使用有機金屬化學氣相沉積系統將結構層成長於藍寶石基板上。實驗的結果顯示集極飽和電流和轉導值分別為506.9 mA/mm和52.475 mS/mm。另外,將實驗數據與模擬數據直流特性相互匹配,在模擬上使用適當的參數讓模擬數據接近實驗結果,提高模擬準確度。
模擬結果顯示,由於通道有摻雜(元件A)其二維電子雲氣(2DEG)的載子濃度將較無摻雜通道元件(元件B)來得高。由於通道摻雜後2DEG內的雜質濃度上升,使得雜質散射效應影響上升,2DEG內的載子移動率進而下降,故其通道摻雜使得汲極飽和電流、轉導值、臨界電壓、崩潰電壓與高頻特性受到影響而特性變差。而元件C、D、E、F、G、H將摻雜層遠離2DEG通道,可減少雜質散射效應。研究結果顯示,通道摻雜元件(元件F、G、H)其元件特性是優於無摻雜通道元件(元件B)。元件F、G、H獲得比元件B還要高的2DEG,其濃度分別為1.158 × 1020、1.155 × 1020、1.154 × 1020 cm-3,最大飽和電流與最大轉導值分別為672、682、689.7 mA/mm與84.4、87、89.4 mS/mm,單位電流增益截止頻率與最大震盪頻率分別為17.8、18.1、18.3 GHz與28.3、29.1、29.2 GHz。

* 研究生
** 指導教授

關鍵字 : 氮化鋁鎵/氮化鎵、高電子遷移率電晶體、摻雜通道、雜質散射

Investigation of AlGaN/GaN Doping-Channel High Electron Mobility Transistors

Fu-Min Wang* Jung-Hui Tsai**

Department of Electronics, National Kaohsiung Normal University, Kaohsiung, Taiwan, R.O.C

Abstract

In this dissertation, we will fabricate and investigate the impact of doping channel on the AlGaN/GaN doping-channel high electron mobility transistors, and the influence of doped thickness on AlGaN/GaN doping-channel high electron mobility transistors will be included. The structures were designed as follows:
(1) AlGaN/GaN doping-channel high electron mobility transistor with channel doping region thickness of 20 nm (called Device A).
(2) AlGaN/GaN high electron mobility transistor without GaN doping-channel layer (called Device B).
(3) AlGaN/GaN doping-channel high electron mobility transistor with a channel doping region thickness of 19.5, 19, 17.5, 15, 10, and 5 nm, respectively, and with a spacer close to the AlGaN/GaN heterojunction of 0.5, 1, 2.5, 5, 10, and 15 nm, respectively (called Devices C, D, E, F, G, and H).
The device (Device A) was fabricated by metal-organic chemical vapor deposition system on a sapphire substrate. The experimental results exhibit a maximum drain saturation current of 506.9 mA/mm and a maximum transconductance of 52.475 mS/mm. Also, we will simulate the DC performance of device A with doping channel according to the experimental data. The simulated characteristics are close to the experimental results by choosing the proper parameters.
Simulation results show that the 2DEG concentration of the device A is higher than the device B without the doping-channel layer. The doping channel will enable the 2DEG concentration to increase. However, the impurity scattering of carriers in the doping channel will lead to the electron mobility to decrease. The results show that the device A with a doping channel has poor output saturation current, transconductance, gate leakage current, breakdown voltage, and high-frequency characteristics. In addition, the doping layer of devices C, D, E, F, G, and H are away from the 2DEG. It can decrease the effect of impurity scattering. The result exhibits that the DC and high-frequency characteristics of the devices F, G, and H are better than the device B. In the devices F, G, and H, the 2DEG carrier concentrations are 1.158 × 1020, 1.155 × 1020, and 1.154 × 1020 cm-3, the maximum output currents are of 672, 682, and 689.7 mA/mm, and transconductance are 84.4, 87, and 89.4 mS/mm, respectively. Furthermore, the unity gain cut-off frequencies are 17.8, 18.1, and 18.3 GHz, and maximum oscillation frequencies are 28.3, 29.1, and 29.2 GHz respectively.

* Author
** Advisor
KEYWORDS : AlGaN/GaN, high electron mobility transistor, doping channel, impurity scattering

CONTENTS
Abstract (Chinese) I
Abstract (English) IV
Table Lists XVII
Figure Captions XVIII
Chapter 1 Introduction 1
1.1 General Background Information 1
1-2 Properties of Materials 1
1-3 High Electron Mobility Transistors (HEMTs) 2
1-4 Purpose of Research 4
1-5 Thesis Organizations 4
Chapter 2 The impact of doping channel on AlGaN/GaN doping-channel high electron mobility transistors (HEMTs) 6
2-1 Introduction 6
2-2 Device Fabrication and Simulation Environment 7
2-2-1 Device Fabrication 7
2-2-2 Device Model of Simulation 7
2-3 Device Structures 8
2-4 Result and Discussion 8
2-5 Conclusion 14
Chapter 3 The influence of doped thickness on AlGaN/GaN doping-channel high electron mobility transistors (HEMTs) 16
3-1 Introduction 16
3-2 Device Structure 17
3-3 Result and Discussion 18
3-3-1 DC and RF Characteristics 18
3-3-2 Comparison of Devices B and H 21
3-4 Conclusion 22
Chapter 4 Conclusion and Prospect 23
4-1 Conclusion 23
4-2 Prospects and Future Work 24
References 27
Tables 33
Figures 36

Table Lists

Table I Summary of physical models.
Table II Simulated results of the devices C, D, E, F, G and H.
Table III Simulated results of the devices B and H.


Figure captions

Figure 2-1 Schematic diagram of the cross section and top view of the studied AlGaN/GaN doping-channel HEMT.
Figure 2-2 Schematic cross section of device B with simulated structure.
Figure 2-3 Comparison of simulated (solid line) and experimental (dashed line) drain-to-source saturation current and transconductance versus the gate bias.
Figure 2-4 Comparison of simulated (solid line) and experimental (dashed line) I-V characteristics. The controlled gate voltage is applied by -1 V/step.
Figure 2-5 (a) Corresponding energy-band diagram from the middle of gate to buffer layer of the device A at equilibrium.
(b) Corresponding energy-band diagram from the middle of gate to buffer layer of the device B at equilibrium.
(c) Comparison of conduction bands near the AlGaN/GaN heterojunction of devices A and B at equilibrium.
Figure 2-6 Comparison of electron concentrations of devices A and B at equilibrium.
Figure 2-7 Relation between drain current and gate-to-source voltage of the devices A and B.
Figure 2-8 (a) Simulated I-V characteristics of the device A. The controlled gate voltage is applied by -1 V/step.
(b) Simulated I-V characteristics of the device B. The controlled gate voltage is applied by -1 V/step.
Figure 2-9 (a) Comparison of electron velocities of devices A and B at VGS = 0 V.
(b) Comparison of electron velocities of devices A and B at VGS = 3 V
Figure 2-10 (a) Drain-to-source saturation current and transconductance versus gate bias of device A.
(b) Drain-to-source saturation current and transconductance versus gate bias of device B.
Figure 2-11 The inverted gate-to-drain current-voltage characteristics of the devices A and B.
Figure 2-12 (a) Microwave performance of the device A.
(b) Microwave performance of the device B.
Figure 3-1 (a) Schematic cross section of device C with simulated structure.
(b) Schematic cross section of device D with simulated structure.
(c) Schematic cross section of device E with simulated structure.
(d) Schematic cross section of device F with simulated structure.
(e) Schematic cross section of device G with simulated structure.
(f) Schematic cross section of device H with simulated structure.
Figure 3-2 Comparison of conduction bands near the AlGaN/GaN heterojunctions of devices C, D, E, F, G and H.
Figure 3-3 Comparison of electron concentrations of devices C, D, E, F, G and H
Figure 3-4 (a) Simulated I-V characteristics of the device C. The controlled gate voltage is applied by -1 V/step.
(b) Simulated I-V characteristics of the device D. The controlled gate voltage is applied by -1 V/step.
(c) Simulated I-V characteristics of the device E. The controlled gate voltage is applied by -1 V/step.
(d) Simulated I-V characteristics of the device F. The controlled gate voltage is applied by -1 V/step.
(e) Simulated I-V characteristics of the device G. The controlled gate voltage is applied by -1 V/step.
(f) Simulated I-V characteristics of the device H. The controlled gate voltage is applied by -1 V/step.
Figure 3-5 (a) Comparison of electron velocities of devices C, D, E, F, G, and H at VGS = 0 V.
(b) Comparison of electron velocities of devices C, D, E, F, G, and H at VGS = 3 V.
Figure 3-6 Relation between drain current and gate-to-source voltage of the devices C, D, E, F, G and H
Figure 3-7 (a) Drain-to-source saturation current and transconductance versus gate bias of device C.
(b) Drain-to-source saturation current and transconductance versus gate bias of device D.
(c) Drain-to-source saturation current and transconductance versus gate bias of device E.
(d) Drain-to-source saturation current and transconductance versus gate bias of device F.
(e) Drain-to-source saturation current and transconductance versus gate bias of device G.
(f) Drain-to-source saturation current and transconductance versus gate bias of device H.
Figure 3-8 The inverted gate-to-drain current-voltage characteristics of the devices C, D, E, F, G and H.
Figure 3-9 (a) Microwave performance of the device C.
(b) Microwave performance of the device D.
(c) Microwave performance of the device E.
(d) Microwave performance of the device F.
(e) Microwave performance of the device G.
(f) Microwave performance of the device H.


References

[1] L. Semra, A. Telia, and M. Kaddeche, “Effects of spontaneous and piezoelectric polarization on AlInN/GaN heterostructure,” International Council on Education for Teaching, pp. 1-4, 2012.

[2] J. Kuzmík, “Power Electronics on InAlN/(In)GaN:Prospect for a Record Performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510-512, 2001.

[3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol 85, no 6, pp. 3222-3233, 1999.

[4] J. H. Tsai, W. S. Lour, C. H. Huang, S. S. Ye, and Y. C. Ma, “Gate voltage swing enhancement of InGaP/InGaAs pseudomorphic HFET with low-to-high double doping channels,” Electron. Lett., vol 46, no 22, pp. 1-2, 2010.

[5] J. H. Tsai, D. F. Guo, Y. H. Lee, N. F. Dale, and W. S. Lour, “InGaP/GaAs/InGaAs Doped-Channel Field-Effect Transistor Using Camel-Like Gate Structure,” ICMMT 2010 Proceedings, pp. 1476-1479, 2010.

[6] J. H. Tsai, W. S. Lour, T. Y. Weng, and C. M. Li, “InGaP/InGaAs Doped-Channel Direct-Coupled Field-Effect Transistors Logic with Low Supply Voltage,” Semiconductors, vol. 44, no. 2, pp. 235-239, 2010.

[7] J. H. Tsai, J. C. Jhou, and J. J. Ou Yang, “Investigation of InGaP/InGaAs Pseudomorphic Triple Doped-Channel Field-Effect Transistors,” 2011 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC 2011), pp. 1-2, 2011.

[8] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, “600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1373-1375, 2013.

[9] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs With Thin InGaN Cap Layer for Normally Off Operation,” IEEE Electron Device Lett., vol. 28, no. 7, pp. 549-551, 2007.

[10] A. L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P. J. Willadsen, A. Schmitz, D. C. Wheeler, C. M. Butler, D. Brown, S. D. Burnham, and M. Micovic, “Enhancement-Mode AlN/GaN/AlGaN DHFET With 700-mS/mm g m and 112-GHz f T,” IEEE Electron Device Lett., vol. 31, no. 10, pp. 1116-1118, 2010.

[11] L. Yuan, H. Chen, and K. J. Chen, “Normally Off AlGaN/GaN Metal–2DEG Tunnel-Junction Field-Effect Transistors,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 303-305, 2011.

[12] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J. F. Carlin, M. Gonschorek, N. Grandjean, T. Maier, and R. Quay, “102-GHz AlInN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz,” IEEE Electron Device Lett., vol. 30, no. 8, pp. 796-798, 2009.

[13] S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, and P. Frijlink, “AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz F MAX,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 36-38, 2013.

[14] F. Medjdoub, D. Ducatteau, C. Gaquie`re, J. F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, N. Grandjean, and E. Kohn, “Evaluation of AlInN/GaN HEMTs on sapphire substrate in microwave, time and temperature domains,” Electron. Lett., vol. 43, no. 5, pp. 1-2, 2007.

[15] M. X. Feng, J. P. Liu, S. M. Zhang, D. S. Jiang, Z. C. Li, D. Y. Li, L. Q. Zhang, F. Wang, H. Wang, and H. Yang, “Design Considerations for GaN-Based Blue Laser Diodes With InGaN Upper Waveguide Layer,” IEEE Journal of Selected Topics in Quanrum Electronics, vol. 19, no. 4, pp. 1-5, 2013.

[16] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of Built-In Polarization on InGaN–GaN Vertical-Cavity Surface-Emitting Lasers,” IEEE Photon. Technol. Lett., vol. 18, no. 1, pp. 7-9, 2006.

[17] Y. K. Kuo, B. C. Lin, J. Y. Chang, F. M. Chen, and H. C. Kuo, “Numerical Study of (0001) Face GaN/InGaN p-i-n Solar Cell With Compositional Grading Configuration,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 1039-1041, 2012.

[18] J. R. Dickerson, K. Pantzas, A. Ougazzaden, and P. L. Voss, “Polarization-Induced Electric Fields Make Robust n-GaN/i-InGaN/p-GaN Solar Cells,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 363-365, 2013.

[19] J. Chun, Y. Hwang, Y. S. Choi, T. Jeong, J. H. Baek, H. C. Ko, and S. J. Park, “Transfer of GaN LEDs from Sapphire to Flexible Substrates by Laser Lift-Off and Contact Printing,” IEEE Photon. Technol. Lett., vol. 24, no. 23, pp. 2115-2118, 2012.

[20] J. H. Tsai, S. S. Ye, D. F. Guo, and W. S. Lour, “Comparative Study of InGaP/GaAs High Electron Mobility Transistors with Upper and Lower Delta-Doped Supplied Layers,” Semiconductors, vol.46, no. 4, pp. 514-518, 2012.

[21] J. H. Tsai, W. S. Lour, C. H. Huang, N. F. Dale, Y. H. Lee,J. S. Sheng, and W. C. Liu, “Investigation of InGaP/GaAs/InGaAs camel-like gate delta-doped p-channel field-effect transistor,” Solid-State Electronics, vol. 54, no. 3, pp. 275–278, 2010.

[22] J. H. Tsai, “Influence of gate thermal oxide layer on InGaP/InGaAs doping-channel field-effect transistors,” Materials Chemistry and Physics, vol. 133, no. 1, pp. 328–332, 2012.

[23] M. Asif Khan, Q. Chen, J. W. Yang, Michael S. Shur, B. T. Dermott, and J. A. Higgins, “Microwave Operation of GaN/AlGaN-Doped Channel Heterostriucture Field Effect Transistors,” IEEE Electron Device Lett., vol. 17, no. 7, pp. 325–327, 1996.

[24] M. Asif Khan, Q. Chen, J. W. Yang, Michael S. Shur, B. T. Dermott, and J. A. Higgins, “The Effects of Isoelectronic Al Doping and Process Optimization for the Fabrication of High-Power AlGaN–GaN HEMTs,” IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 785–789, 2004.

[25] E. Kohn, I. Daumiller, M. Kunze, M. Neuburger, M. Seyboth, T. J. Jenkins, S. Member, J. S. Sewell, J. V. Norstand, Y. Smorchkova, and U. K. Mishra, “Transient Characteristics of GaN-Based Heterostructure Field-Effect Transistors,” IEEE Trans. Microwave Theory and Techniques, vol. 51, no. 2, pp. 634–642, 2003.

[26] W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs,” Solid-State Electronics, vol. 46, no. 1, pp. 1441–1444, 2002.

[27] G. Meneghesso, M. Meneghini, A. Stocco, D. Bisi, C. de Santi, I. Rossetto, A. Zanandrea, F. Rampazzo, and E. Zanoni, “Degradation of AlGaN/GaN HEMT devices: Role of reverse-bias and hot electron stress,” Microelectronic Engineering, vol. 109, no. 1, pp. 257–261, 2013.

[28] J. Joh, L. Xia, and J. A. del Alamo, “Gate Current Degradation Mechanisms of GaN High Electron Mobility Transistors,” IEDM 2007, pp. 385–388, 2007.

[29] Z. Wang, B. Zhang, W. Chen, and Z. Li, “A Closed-Form Charge Control Model for the Threshold Voltage of Depletion- and Enhancement-Mode AlGaN/GaN Devices,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1607–1612, 2013.

[30] G. W. Wang, and L. F. Eastman, “An Analytical Model for I- Y and Small-Signal Characteristics of Planar-Doped HEMT's,” IEEE Trans. Microwave theory and techniques, vol. 37, no. 9, pp. 1395–1400, 1989.

[31] N. V. Drozdovski, and R. H. Caverly, “GaN-Based High Electron-Mobility Transistors for Microwave and RF Control Applications,” IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 1, pp. 4–8, 2002.

[32] L. Hsu, and W. Walukiewicz, “Electron mobility in AlxGa1-xN/GaN heterostructures,” Phys. Rev., vol. 56, no. 3, pp. 1520–1528, 1997.

[33] J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y.-F. Wu, and U. K. Mishra, “Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors,” J. Appl. Phys., vol. 87, no. 8, pp. 3900–3904, 2000.

[34] R. Tülek, E. Arslan, A. Bayraklı, S. Turhan, S. Gökden, Ö. Duygulu, A.A. Kaya, T. Fırat,A. Teke, and E. Özbay, “The effect of GaN thickness inserted between two AlN layers on the transport properties of a lattice matched AlInN/AlN/GaN/AlN/GaN double channel heterostructure,” Thin Solid Films, pp. 146–152, 2014.

[35] A. Kamath, T. Patil, R. Adari, I. Bhattacharya, S. Ganguly, R. W. Aldhaheri, M. A. Hussain, and D. Saha, “Double-Channel AlGaN/GaN High Electron Mobility Transistor With Back Barriers,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1690–1692, 2012.

[36] M. H. Wong, Y. Pei, R. Chu, S. Rajan, B. L. Swenson, D. F. Brown, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “N-Face Metal–Insulator–Semiconductor High-Electron-Mobility Transistors With AlN Back-Barrier,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1101–1104, 2008.

[37] S. Keller, S. Heikman, L. Shen, I. P. Smorchkova, S. P. DenBaars, and U. K. Mishra, “GaN–GaN junctions with ultrathin AlN interlayers: Expanding heterojunction design,” J. Appl. Phys., vol. 80, no. 23, pp. 4387–4389, 2002.

[38] M. Miyoshil, A. Imanishi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka and O. Oda, “High Performance AlGaN/AlN/GaN HEMTs Grown on 100-mm-diameter Epitaxial AIN/Sapphire Templates by MOVPE,” Compound Semiconductor Integrated Circuit Symposium, pp. 193–196, 2004.

[39] T. Nanjo, K. Kurahashi, A. Imai, Y. Suzuki, M. Nakmura, M. Suita and E. Yagyu, “High-frequency performance of AlGaN channel HEMTs with high breakdown voltage,” Electron. Lett., vol. 50, no. 22, pp. 1577–1579, 2014.

[40] M. H. Wong, S. Rajan, R. M. Chu, T. Palacios, C. S. Suh, L. S. McCarthy, S. Keller, J. S. Speck, and U. K. Mishra, “N-face high electron mobility transistors with a GaN-spacer,” Phys. Stat. Sol., vol. 204, no. 6, pp. 2049–2053, 2007.

[41] IS. Lee, J.W. Kim, J.H. Lee, C.S. Kim, J.E. Oh, M.W. Shin, and J.H. Lee, “Reduction of current collapse in AIGaN/GaN HFETs using AIN interfacial layer,” Electron. Lett., vol. 39, no. 9, pp. 750–752, 2003.

[42] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “A Simple Gate-Dielectric Fabrication Process for AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 997–999, 2012.

[43] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Novel Oxide-Passivated AlGaN/GaN HEMT by Using Hydrogen Peroxide Treatment,” IEEE Electron Device Lett., vol. 58, no. 12, pp. 4430–4433, 2011.

[44] M. A. Mastro, J. R. LaRoche, N. D. Bassim, and C. R. Eddy Jr, “Simulation on the effect of non-uniform strain from the passivation layer on AlGaN/GaN HEMT,” Microelectronics Journal, vol. 36, no. 1, pp. 705–711, 2005.

[45] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping Effects and Microwave Power Performance in AlGaN/GaN HEMTs,” IEEE Trans. electron devices, vol. 48, no. 3, pp. 465–471, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文