跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾耀民
論文名稱:寬頻與雙頻高指向綠能天線
論文名稱(外文):Wideband and dual-band high directive green antenna
指導教授:陳弘典
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:光電與通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:45
中文關鍵詞:綠能天線太陽能板Fabry-Perot 共振腔頻率選擇表面電抗性阻抗表面寬頻雙頻
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文使用太陽能板作為頻率選擇表面,並利用Fabry-Perot共振腔原理,完成寬頻與雙頻高指向綠能天線之設計。綠能天線是由一太陽能板、一激發源及一金屬接地平面或電抗性阻抗表面所組成。在寬頻設計方面利用太陽能板具有正反射相位梯度的特性來實現寬頻綠能天線。太陽能板尺寸為300 × 300 mm2,由6 × 6個尺寸為42 × 42 mm2太陽能電池單元以週期性排列所組成。當綠能天線的共振高度為72.5 mm,此時在2.26 GHz有最大指向性10.92 dBi,其3 dB指性向頻寬2.175 GHz ~ 2.77 GHz (24%)。接著進行雙頻設計,提出在共振腔下層用電抗性阻抗表面取代金屬接地平面,使得綠能天線能夠操控雙頻的頻率比。當使用尺寸為50 × 32 mm2的太陽能電池單元,以8 × 12陣列排列成460 × 430 mm2的綠能天線。選擇適當的電抗性阻抗表面,使得綠能天線在共振高度75 mm時有兩個操作頻帶,其第一操作頻帶約在1.66 GHz有最大指向性值為12.36 dBi,且其指向性頻寬(以指向性大於7.5 dBi來決定)約為1.44 ~ 1.938 GHz (29.8%);第二操作頻帶約在2.32 GHz有最大指向性值為13.5 dBi,其頻寬約為2.12 ~ 2.43 GHz (13.6%)。
關鍵字:綠能天線、太陽能板、Fabry-Perot 共振腔、頻率選擇表面、電抗性阻抗表面、寬頻、雙頻。

文字目錄

中文摘要 i
英文摘要 ii
文字目錄 iv
圖形目錄 vi
表格目錄 viii
第一章 序論 (Introduction) 1
1.1 研究動機 1
1.2 文獻導覽 3
1.3 論文提要 4
第二章 寬頻高指向綠能天線 (Wideband high directive green antenna) 8
2.1 前言 8
2.2 綠能天線結構與設計方法 8
2.3綠能天線結果與討論 11
2.4 心得與討論 13
第三章 外加電抗性阻抗表面的雙頻高指向綠能天線 (Dual-band high directive green antenna with reactive impedance surface) 24
3.1 前言 24
3.2 綠能天線結構與設計方法 25
3.3綠能天線結果與討論 27
3.4 心得與討論 29
第四章 結論 (Conclusions) 38
參考文獻 (References) 39

圖形目錄

圖1.1 國立海洋生物博物館的太陽能屋。 6
圖1.2 美國太陽能板與道路整合技術。 6
圖1.3 德國屋頂太陽能板與天線同時架設的情景。 6
圖1.4 Fabry-Perot共振腔天線結構。 7
圖2.1 (a)綠能天線結構;(b)輻射源(微帶天線)結構;(c)太陽能板;
(d)太陽能電池單位元。 14
圖2.2 綠能天現實體圖 (a)上視圖;(b)俯視圖。 15
圖2.3 太陽能電池單元模擬模型 (a)單層模擬模型;(b)鏡像穿透模擬模型。 16
圖2.4 使用單層模擬法所得到太陽能電池單元的反射係數之(a)反射相位及h = 50 mm、100 mm及72.5 mm的理想相位曲線,(b)反射振幅。 17
圖2.5使用鏡像模擬法所得到的電場分布(a) h = 50 mm,f = 3.03 GHz;(b) h = 100 mm, f = 3.05 GHz;(c) h = 72.5 mm,f = 1.86 GHz;(d) h = 72.5 mm,2.08 GHz;(e) h = 72.5 mm,f = 2.26 GHz。 18
圖2.6 綠能天線之返回損失。 19
圖2.7 綠能天線之指向性。 20
圖2.8 綠能天線的增益。 20
圖2.9 (a)綠能天線Antenna 1a 於3.12 GHz及(b)綠能天線Antenna 1b 於3.095 GHz的模擬遠場輻射場型。 21
圖2.10 綠能天線Ant 2的量測與模擬遠場輻射場型圖 (a) 2.21 GHz,(b) 2.41GHz 22
圖2.11 綠能天線Ant 2的實測與模擬之返回損失。 23
圖2.12綠能天線Ant 2的量測與模擬之增益。 23
圖3.1 (a)雙頻綠能天線結構圖,(b)寬頻偶極激發源(source),(c)太陽能板(solar module),(d)太陽能電池,(e)電抗性阻抗表面(reactive impedance surface,RIS),(f)電抗性阻抗表面單位。 30
圖3.2 使用單層模擬方法在y極化所得到電抗性阻抗表面與太陽能板之
(a)反射振幅,(b)反射相位。 31
圖3.3 使用單層模擬方法在x極化所得到電抗性阻抗表面與太陽能板之
(a)反射振幅,(b)反射相位。 32
圖3.4 理想相位曲線與太陽能電池頻率關係圖;h = 75 mm。 33
圖3.5 雙頻綠能天線之模擬返回損失。 34
圖3.6 雙頻綠能天線之模擬指向性。 34
圖3.7 雙頻綠能天線之模擬增益。 35
圖3.8 綠能天線Ant 1的量測與模擬之返回損失。 36
圖3.9 綠能天線Ant 1的量測與模擬之增益。 36
圖3.9綠能天線Ant 1的量測與模擬遠場輻射場型;
(a) 1.66 GHz,(b) 2.32 GHz 37



表格目錄

表1.1 衛星通訊使用頻帶劃分表。單位: GHz。 2
表2.1 輻射源尺寸(單位:mm)。 12
表2.2 綠能天線模擬結果。太陽能板尺寸為300 × 300 mm2。 12
表3.1 四個電抗性阻抗表面單元(RIS 1 ~ RIS 4)的尺寸。其他尺寸如圖3.1(f)所示。單位:mm。 25
表3.2 使用不同電抗性阻抗表面單元RIS 1 ~ RIS 4所得到的高指向性的操作頻率(預測值)。 27
表3.3 雙頻高指向性綠能天線之指向性。 29


參考文獻
(References)

[1] https://mrpv.org.tw/news_detail.php?id=129
[2] http://www.techbang.com/posts/18129-not-only-manufacturing-wearable-devices-they-also-can-create-lights-the-road
[3] http://www.epochtimes.com/b5/5/1/12/n778351.htm
[4] H. Y. Yang, S. X. Gong, P. F. Zhang, F. T. Zha, and J. Ling, “A novel miniaturized frequency selective surface with excellent center fruquency stability, ” Microwave Opt. Technol. Lett., vol. 51, no. 10, pp. 2513-2516, 2009.
[5] K. Sarabandi, and N, Behdad, “A frequency selective with miniaturized,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239-1245, 2007.
[6] D. Sun, W. Dou, and L. You, “Application of novel cavity-backed proximity-coupled microstrip patch antenna to design broadband conformal phased array,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1010-1013, 2010.
[7] N. Behdad, M. Al-Joumayly and M.Salehi, “A low-profile third-order bandpass frequency selective surface.” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 460-466, 2009.
[8] Yuehe Ge and K.P. Esselle, “Analysis and design of low-profile high-gain resonant cavity antennas with single-layer superstrates.” 2nd International Conference on Signal Processing and Communication Systems, pp. 1-5, 2008.
[9] A.P. Feresidis, and J.C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEE Proc.-Microw. Antennas Propag., vol. 148, no. 6, pp. 345-350, 2001.
[10] M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2115–2122, 1999.
[11] C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, “An electromagnetic bandgap resonator antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 9, pp. 1285–1290, 2002.
[12] Y.J. Lee, J. Yeo, R. Mittra, and W.S. Park, “Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate,” Microwave Opt. Technol. Lett., vol. 43, no. 6, pp. 462-467, 2004.
[13] A. R. Weily, K. P. Esselle, B. C. Sanders, and T. S. Bird, “High-gain 1-D EBG resonator antenna,” Microwave Opt. Technol. Lett., vol. 47, no. 2, pp. 107–114, 2005.
[14] A.P. Feresidis, G. Goussetis, S. Wang, and J.C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209-215, 2005.
[15] H. Boutayeb, K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, “Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design,” Microwave Opt. Technol. Lett., vol. 48, no. 1, pp. 12–17, 2006.
[16] R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in Fabry-Perot cavity for gain enhancement,” IEEE Trans. Antennas Propag., vol. 54, no. 7, pp. 1979–1990, 2006.
[17] H. Boutayeb, and T.A. Denidni, “Internally excited Fabry-Pérot type cavity: Power normalization and directivity evaluation,” IEEE Antennas Wireless Propag. Lett., vol. 5, no. 1, pp. 159-162, 2006.
[18] N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 220-224, 2006.
[19] Z.G. Liu, Z.X. Cao, “Circularly polarized Fabry-Pérot resonator antenna,” IET Microwave Technology and Computational Electromagnetics, pp. 18-21, 2009.
[20] M.A. Joumayly, and N. Behdad, “A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 452-459, 2009.
[21] D.P. Wang, M. Wang, W. Wu, and D.G. Fang, “Design on Fabry-Perot antennas with conical beam,” Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, vol. 1, pp. 471-471, 2011.
[22] K. Lu, Y. Ding, and K.W. Leung, “A new Fabry-Perot resonator antenna fed by an L-probe,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 1237-1244, 2012.
[23] D.H. Lee, Y.J. Lee, J. Yeo, R. Mittra, and W.S. Park, “Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate,” Microwave Opt. Technol. Lett., vol. 49, no. 1, pp. 199-201, 2007.
[24] S.C. Chiu, and S.Y. Chen, “Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate,” IEEE Antennas Propag. Soc. Int. Symp., pp. 1-2, 2012.
[25] R. Orr, G. Goussetis, and V. Fusco, “Design method for circularly polarized Fabry-Perot cavity antennas,” IEEE Trans. Antennas Propag., no. 99, 2013.
[26] S.C. Chiu, and S.Y Chen, “High-gain circularly polarized resonant cavity antenna using FSS superstrate,” IEEE Antennas Propag. Soc. Int. Symp., pp. 2242-2245, 2011.
[27] S.A. Muhammad, R. Sauleau, and H. Legay “Purely metallic waveguide-fed Fabry–Perot cavity antenna with a polarizing frequency selective surface for compact solutions in circular polarization,” Antennas Wireless Propag. Lett., vol. 11, pp. 881-884, 2012.
[28] S.A. Muhammad, R. Sauleau, G. Valerio, L.L. Coq, and H. Legay, “Self-polarizing Fabry–Perot antennas based on polarization twisting element,” IEEE Trans. Antennas Propag., vol. 61, issue 3, pp. 1032-1040, 2013.
[29] Z.C. Ge, W.X. Zhang, Z.G. Liu, and Y.Y. Gu, “Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover,” Microwave Opt. Technol. Lett., vol. 48, no. 7, pp. 1272-1274, 2006.
[30] Z.G. Liu, W.X. Zhang, D.L. Fu, Y.Y. Gu, and Z.C. Ge, “Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size,” Microwave Opt. Technol. Lett., vol. 50, no. 6, pp. 1623-1627, 2008.
[31] L. Moustafa, and B. Jecko, “Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the Ku-band,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 342-346, 2010.
[32] D. Kim, J. Ju, and J. Choi, “A broadband Fabry-Pérot cavity antenna designed using an improved resonance prediction method,” Microwave Opt. Technol. Lett., vol. 53, no. 5, pp. 1065-1069, 2011.
[33] K. Konstantinidis, A.P. Feresidis, P.S. Hall, “Broadband Sub-Wavelength Profile High-Gain Antennas Based on Multi-Layer Metasurfaces,” IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 423-427, 2015.
[34] K. Konstantinidis, A.P. Feresidis, P.S. Hall, “Multilayer partially reflective surfaces for broadband fabry-perot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3474-3481, 2014.
[35] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, J. Xu, “Wideband fabry-perot resonator antenna with two complementary FSS layers,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2463-2471, 2014.
[36] N. Wang, Q. Liu, C. Wu, L. Talbi, Q. Zeng, J. Xu, “Wideband fabry-perot resonator antenna with two layers of dielectric superstrates,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 229-232, 2015.
[37] Y. Ge, and C. Wang, “A Tri-band fabry-perot cavity for antenna gain enhancement,” IEEE Antennas Propag. Soc. Int. Symp, pp. 284 -285, 2013.
[38] B.A. Zeb, “A new technique to design 1-D dual-band EBG resonator antennas,” IEEE Antennas Propag. Soc. Int. Symp, pp. 1804-1807, 2011.
[39] B.A. Zeb, Ge. Y, K.P. Essele, and M.E. Tobar, “A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4522-4529, 2012.
[40] B.A. Zeb, “A high-gain dual-band EBG resonator antenna with circular polarization,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 108-111, 2015.
[41] A. Pirhadi, and M. Hakkak, “Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor,” IEEE Trans. Antennas Propagat., vol. 55, no. 6, pp. 1682-1689, 2007.
[42] E. Rodes, M. Diblanc, E. Arnaud, T. Monédière, and B. Jecko, “Dual-band EBG resonator antenna using a single-layer FSS,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 368-371, 2007.
[43] D. Kim, “Novel dual-band fabry-perot cavity antenna with low-frequency separation ratio,” Microwave Opt. Technol. Lett., vol. 51, pp. 1869-1872, 2009.
[44] A. Kanso, R. Chantalat, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 854-858, 2010.
[45] A. Kanso, R. Chantalat, M. Thevenot, U. Naeem, S. Bila, and T. Monediere, “Multifeed EBG dual band antenna to feed a reflector antenna,” 41st European Microwave Conference, pp. 866-869, 2011.
[46] H. Wang, X.B. Huang, and D.G. Fang, “A single layer wideband U-slot microstrip patch antenna array,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 9-12, 2008.
[47] D.H. Werner and D. Lee, “A design approach for dual-polarized multiband frequency selective surfaces using fractal elements,” IEEE Antennas Propag. Soc. Int. Symp, vol. 3, pp. 1692-1695, 2000.
[48] E.H. Lim, K.W. Leung, C.C. Su, and H.Y. Wong, “Green antenna for solar energy collection,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 689-692, 2010.
[49] S. Vaccaro, J.R. Mosig, and P. deMaagt, “Two advanced solar antenna ‘SOLANT’ designs for satellite and terrestrial communications,’’ IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 2028-2034, 2003.
[50] N. Henze, A. Giere, H. Fruchting, and P. Hofmann, “GPS patch antenna with photovoltaic solar cells for vehicular applications,” IEEE 58TH Vehicular Technology Conference, pp. 50-54, 2003.
[51] N. Henze, C. Bendel, H. Fruchting, and J. Kirchhof, “Application of photovoltaic solar cells in planar antenna structures,” Twelfth International Conference on Antennas and Propagation, pp. 731-734, 2003.
[52] T. C. Pu, H. H. Lin, C. Y. Wu, and J. H. Chen, “Photovoltaic panel as metamaterial antenna radome for dual-band application,” Microwave Opt. Technol. Lett., vol. 53, no. 10, pp. 2382-2388, 2011.
[53] C. Y. Wu, H. H. Lin, T. C. Pu and J. H. Chen, “High gain dual-band antenna using photovoltaic panel as metamaterial superstrate.” IEEE Antennas Propag. Soc. Int. Symp., pp. 2235-2238, 2011.
[54] 莊燊綸, “利用太陽能板當頻率選擇表面的高指向綠能天線設計,” 國立高雄師範大學光電與通訊工程學系碩士論文, 2012.
[55] 曾彥鳴, “利用自我極化技術實現圓極化綠能天線之研究,” 國立高雄師範大學光電與通訊工程學系碩士論文, 2013.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top