跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊惠文
論文名稱:應用於金屬機身智慧型手機之LTE/WWAN開槽孔天線設計
論文名稱(外文):LTE/WWAN open slot antennas for applications in smart phones with metal covering
指導教授:陳弘典
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:光電與通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:60
中文關鍵詞:智慧型手機天線開槽孔天線帶拒電路
外文關鍵詞:smart phone antennaopen slot antennaband-stop matching circuit
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出三種應用於金屬機身智慧型手機之LTE/WWAN開槽孔天線設計,皆採用將開槽孔印製於手機金屬背蓋上的方式,實現雙寬頻操作並涵蓋LTE/WWAN所需之頻寬。所提的前兩種天線皆包含兩開槽孔,並利用一帶拒電路提升天線的操作頻寬。兩天線皆利用一微帶饋入線來耦合激發,但訊號饋入端設計在不同的饋入位置。兩支天線皆可涵蓋低頻帶704 ~ 960 MHz、高頻帶1710 ~ 2690 MHz的頻寬要求。第三種天線減少了金屬背蓋上的開槽孔數量,由一開槽孔及一三支路的饋入線及一晶片電容所構成,透過各分支饋入線來激發開槽孔的四個模態,完成低頻帶頻寬為356 MHz (685 ~ 1041 MHz),高頻帶頻寬為1028 MHz (1662 ~ 2690 MHz)。所有天線的效率在低頻帶及高頻帶分別可達40 %及41.8 %,符合行動電話的實際應用需求。
Three novel designs of the open slot antennas for applications in smart phones with metal covering casing are presented in this thesis. The first two proposed antennas are two open slot structure integrated with a band-stop matching circuit for enhancing the operating bandwidth of the antenna, and they are excited by a microstrip feedline in different feeding location. The achieved impedance bandwidths for the two antennas can cover the LTE/WWAN bands of 704 ~ 960 MHz and 1710 ~ 2690 MHz. As for the third proposed antenna, an open slot and a chip capacitor are used and excited by a triple-branch microstrip feedline. Tht antenna can provide the bands of 685 ~ 1041 MHz and 1662 ~ 2690 MHz. The radiation efficiencies for all three proposed antennas are larger than 40% in the lower band and 76.8% in the upper band. The obtained radiation efficiencies are good for practical applications for LTE/WWAN operation in the mobile phone.
文字目錄
摘要 i
文字目錄 ii
圖形目錄 iii
第一章 序論 (Introduction) 1
1.1 研究動機 1
1.2 文獻導覽 3
1.3 論文提要 4
第二章 應用於金屬背蓋智慧型手機之LTE/WWAN雙開槽孔天線
(LTE/WWAN dual open-slot antenna for application in smart phone
with metal covering) 6
2.1 前言 6
2.2 應用於5吋金屬背蓋智慧型手機之LTE/WWAN雙開槽孔天線 6
2.3 應用於6吋金屬背蓋智慧型手機之LTE/WWAN雙開槽孔天線 23
2.4 心得與討論 38
第三章 應用於金屬背蓋智慧型手機之LTE/WWAN單開槽孔天線
(LTE/WWAN single open slot antenna design for application in
smart phone with metal covering) 39
3.1 前言 39
3.2 天線設計原理介紹 39
3.3 結果及討 論 40
3.4 心得與討論 52
第四章 結論 (Conclusion) 53
參考文獻 (Reference) 54

圖形目錄
圖1.1 LTE/WWAN通訊系統之操作頻帶示意圖。 2
圖1.2 iPhone 6 2
圖1.3 HTC One (M8) 2
圖2.1 (a)本天線(設計一)系統配置圖及天線結構,(b)饋入端並聯諧振電路
示意圖。 10
圖2.2 天線實體照片。 10
圖2.3 本天線(設計一)模擬及量測的返回損失結果;
S = 6.5 mm,t = 4 mm。 11
圖2.4 參考天線與本天線(設計一)的模擬輸入阻抗結果;
(a) 輸入電阻,(b) 輸入電抗。 12
圖2.5 參考天線與本天線(設計一)的模擬返回損失結果。 13
圖2.6 改變微調殘段長度S所得到的模擬輸入阻抗結果;
(a) 輸入電阻,(b)輸入電抗。 14
圖2.7 改變微調殘段長度S所得到的模擬返回損失結果。 15
圖2.8 改變折彎長度t所得到的模擬輸入阻抗結果;
(a) 輸入電阻,(b) 輸入電抗。 16
圖2.9 改變折彎長度t所得到的模擬返回損失結果。 17
圖2.10本天線(設計一)開槽孔的模擬磁流結果;
(a) 735 MHz,(b) 1685 MHz,(c) 2380 MHz。 18
圖2.11本天線(設計一)的天線效率;(a) 低頻帶,(b)高頻帶。 19
圖2.12本天線(設計一)模擬與量測的二維輻射場型結果;
(a) 735 MHz,(b) 930 MHz,(c) 1710 MHz,(d) 2600 MHz。 20
圖2.13 (a)本天線(設計二)系統配置圖及天線結構圖;(b)饋入端之帶拒電路
元件示意圖。 26
圖2.14本天線(設計二)的實體照片。 26
圖2.15本天線(設計二)返回損失模擬及量測結果。 27
圖2.16本天線(設計二)與參考天線的模擬輸入阻抗結果;
(a) 輸入電阻,(b)輸入電抗。 28
圖2.17本天線(設計二)與參考天線的模擬返回損失結果。 29
圖2.18改變open slot #1與基板上緣的距離d的模擬返回損失結果;
(a) 輸入電阻,(b) 輸入電抗。 30
圖2.19改變open slot #1與基板上緣的距離d的模擬返回損失結果。 31
圖2.20改變微調殘段長度S的模擬返回損失結果;
(a) 輸入電阻,(b) 輸入電抗。 32
圖2.21改變微調殘段長度S的模擬返回損失結果。 33
圖2.22本天線(設計二)開槽孔的磁流模擬結果;
(a) 795 MHz,(b) 1510 MHz,(c) 2330 MHz。 34
圖2.23本天線(設計二)的天線效率。(a)低頻帶,(b)高頻帶。 35
圖2.24本天線(設計二)模擬與量測的二維輻射場型結果;
(a) 780 MHz,(b) 1710 MHz,(c) 2580 MHz。 36
圖3.1 所提天線設計結構示意圖。 43
圖3.2 天線實體照片。 43
圖3.3 所提天線模擬及量測的返回損失結果;C = 2.7 pF。 44
圖3.4 所提天線與參考天線的模擬輸入阻抗結果;
(a) 輸入電阻 (b)輸入電抗。 45
圖3.5 所提天線與參考天線的模擬返回損失結果。 46
圖3.6 改變電容元件值C所得到的模擬輸入阻抗結果;
(a) 輸入電阻 (b)輸入電抗。 47
圖3.7 改變電容元件值C所得到的模擬返回損失結果。 48

圖3.8 本天線的天線效率;(a) 低頻帶 (b)高頻帶。 49
圖3.9 本天線模擬與量測的二維輻射場型結果;
(a) 700 MHz (b) 900 MHz (c) 1710 MHz (d) 2030 MHz。 50



[1] http://cdn.macrumors.com/article-new/2014/09/iphone_6_iphone_6_plus1.png
[2] http://www.htc.com/us/smartphones/htc-one-m8
[3] C. L. Liu, Y.F. Lin, C. M. Liang, S. C. Pan, and H. M. Chen, “Miniature internal penta-band monopole antenna for mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 1008-1011, March 2010.
[4] K. L. Wong and F. H. Chu, “Planar printed strip monopole with a closely-coupled parasitic shorted strip for eight-band LTE/GSM/UMTS mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3426-3431, Oct. 2010.
[5] K. L. Wong and C. T. Lee, “Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2479-2483, Jul. 2010.
[6] J. H. Lu and Y. S. Wang, “Planar internal LTE/WWAN monopole antenna for tablet computer application,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4358-4363, 2013.
[7] K. L. Wong and C. H. Huang, “Printed loop antenna with a perpendicular feed for penta-band mobile phone application,” IEEE Trans. Antennas Propag., vol. 56, pp. 2138-2141, July 2008.
[8] K. L. Wong and S.Y. Tu, “Ultra-wideband loop antenna coupled-fed by a monopole feed for penta-band folder-type mobile phone,” Microwave Opt. Technol. Lett., vol. 50, no. 10, pp. 2706-2712, Oct. 2008.
[9] K. L. Wong and W. Y. Li, “Seven-band surface-mount loop antenna with a capacitively coupled feed for mobile phone application,” Microwave Opt. Technol. Lett., vol. 51, no. 1, pp. 81-88, Jan. 2009.
[10] Y. W. Chi and K. L. Wong, “Very-small-size printed loop antenna for GSM/DCS/PCS/UMTS operation in the mobile phone,” Microwave Opt. Technol. Lett., vol. 51, no. 1, pp. 184-192, 2009.
[11] Y. W. Chi and K. L. Wong, “Quarter-wavelength printed loop antenna with an internal printed matching circuit for GSM/DCS/PCS/UMTS in the mobile phone,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2541-2547, Sep. 2009.
[12] F. H. Chu and K. L. Wong, “Internal coupled-fed loop antenna integrated with notched ground plane for wireless wide area network operation in the mobile handset,” Microwave Opt. Technol. Lett., vol. 54, no. 3, pp. 599-605, 2012.
[13] K. L. Wong and S. J. Liao, “Uniplanar coupled-fed printed PIFA for WWAN operation in the laptop computer,” Microwave Opt. Technol. Lett., vol. 51, no. 2, pp. 549-554, Feb. 2009.
[14] W. Y. Chen and K. L. Wong, “Wideband coupled-fed PIFA for HAC penta-band clamshell mobile phone,” Microwave Opt. Technol. Lett., vol. 51, no. 10, pp. 2369-2374, 2009.
[15] C. H. Chang and K. L. Wong,“Printed λ/8-PIFA for internal penta-band mobile phone antenna,” 3rd European Conference on Antennas and Propag. (EuCAP), pp. 533-537, March. 2009.
[16] W. Y. Li, K. L. Wong, C. Y. Wu, and M. F. Tu, “Internal small-size PIFA for LTE/GSM/UMTS operation in the mobile phone,” IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, 2010
[17] J. Anguera, I. Sanz, J. Mumbru, and C. Puente, “Multiband handset antenna with a parallel excitation of PIFA and slot radiators,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 348-356, Feb. 2010.
[18] P. Li, J. Pan, D. Yang, Z. P. Nie, and J. Xing, "A novel quad-band (GSM850 to IEEE 802.11a) PIFA for mobile handset," Progress In Electromagnetics Research, vol. 137, 539-549, 2013.
[19] C. I. Lin and K. L. Wong, “Print monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3690-3697, 2007.
[20] K. L. Wong, Y. W. Chi, and S. Y. Tu, “Printed folded slot antenna for internal multiband mobile phone antenna,” IEEE Antennas Propag. Soc. Int. Symp., pp. 2622-2625, 2007
[21] W. S. Chen and K. Y. Ku, “Band-rejected design of the printed open slot antenna for WLAN/WiMAX operation,” IEEE Trans. Antennas Propag., vol. 56, no. 4, pp. 1163-1169, 2008.
[22] M. I. Lai and S. K. Jeng, “Slot antennas with an extended ground for multiple-antenna systems in compact wireless devices,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 19-22, 2009.
[23] K. L. Wong and L. C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 324-330, Feb. 2009.
[24] F. H. Chu and K. L. Wong, “Simple folded monopole slot antenna for penta-band clamshell mobile phone application,” IEEE Trans. Antennas Propag., vol. 57, no. 11, pp. 3680-3684, 2009.
[25] C. Q. Lei, Y. L. Ban, J. H. Chen, Li, and J. L. –W, “Small-size slot antenna for seven-band LTE/WWAN mobile phone operation,” IEEE International Workshop on Electromagnetics(iWEM), pp. 1-2, Aug. 2012.
[26] K. L. Wong and W. J. Lin, “WWAN/LTE printed slot antenna for tablet computer application,” Microwave Opt. Technol. Lett., vol. 54, no. 1, pp. 44-49, 2012.
[27] 翁金輅、林栢暐,”行動通訊裝置及其單極槽孔天線”,中華民國專利,第I464960號,中華民國103年12月11日
[28] K. L. Wong and P. R. Wu, “Dual-wideband linear open slot antenna with two open ends for the LTE/WWAN smartphone,” Microwave Opt. Technol. Lett., vol. 57, no. 6, pp. 1269-1274, Jun. 2015.
[29] K. L. Wong and P. R. Wu, “Low-profile dual-wideband dual-inverted-L open-slot antenna for the LTE/WWAN tablet device,” Microwave Opt. Technol. Lett., vol. 57, no. 8, pp. 1813-1818, Aug. 2015.
[30] H. Rhyu, J. Byun, F. J. Harackiewicz, and M. J. Park, “Multi-band hybrid antenna for ultra-thin mobile phone applications,” Electronics Lett., vol. 45, no. 15, pp. 773-774, Jul. 2009.
[31] A. Cabedo, J. Anguera, C. Picher, M. Ribó, and C. Puente, “Multiband handset antenna combining a PIFA, slots, and ground plane modes,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2526-2533, Sep. 2009
[32] K. L. Wong and T. W. Kang, “Internal planar loop/monopole combo antenna for eight-band LTE/GSM/UMTS operation in the laptop computer,” 4th European Conference on Antennas and Propagation (EuCAP), pp. 1-4, 2010.
[33] G. Kang, Z. Du, and K. Gong, “Compact broadband printed slot-monopole-hybrid diversity antenna for mobile terminals,” IEEE Antennas Wireless Propag. Lett., vol, 10, pp. 159-162, 2011.
[34] T. W. Kang, K. L. Wong, L. C. Chou, and M. R. Hsu, “Coupled-fed shorted monopole with a radiating feed structure for eight-band LTE/WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 674-679, 2011.
[35] J. H. Lu and Y. S. Wang, “Internal uniplanar antenna for LTE/GSM/UMTS operation in a tablet computer,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2841-2846, 2013.
[36] Y. Li, Z. Zhang, J. Zheng, Z. Feng, and M. F. Iskander, “A compact hepta-band loop-inverted F reconfigurable antenna for mobile phone,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 389-392, 2012.
[37] I. Ahmed, I. Shoaib, N. Shoaib, A. Rasheed, and S. Shoaib, “A printed hybrid loop inverted-F antenna next generation handheld terminals,” 7th European Conference on Antennas and Propagation (EuCAP), pp. 2044-2047, Apr. 2013.
[38] R. Martens and D. Manteuffel, “Mobile LTE-A handset antenna using a hybrid coupling element,” 2014 IEEE Antennas and Propag. Soc. Int. Symp., pp. 1419-1420, Jul. 2014.
[39] J. Ilvonen, R. Valkonen, J. Holopainen, and V. Viikari, “Design strategy for 4G handset antennas and a multiband hybrid antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 4, Apr. 2014.
[40] K. R. Boyle and P. G. Steeneken, “A five-band reconfigurable PIFA for mobile phones,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3300-3309, 2007.
[41] Y. K. Park and Y. Sung, “A reconfigurable antenna for quad-band mobile handset applications,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 3003-3006, 2012.
[42] P. Bahramzy and M. Sager, “Dual-feed ultra-compact reconfigurable handset antenna for penta-band operation,” IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, 2010.
[43] A. C. K. Mak, C. R. Rowell, R. D. Murch, and C. L. Mak, “Reconfigurable multiband Antenna designs for wireless communication devices,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 1919-1928, 2007.
[44] J. Cho, C. W. Jung and K. Kim, “Frequency-reconfigurable two-port antenna for mobile phone operating over multiple service bands,” Electronics Letters, vol. 45, no. 20, pp. 1009-1011, 2009.
[45] P. Vainikainen, J. Ollikainen, O. Kivekäs and I. Kelander, “Resonator-based analysis of the combination of mobile handset antenna and chassis,” IEEE Trans. Antennas Propag., vol. 50, no. 10, pp. 1433-1444, 2002.
[46] J. Villanen, J. Ollikainen, O. Kivekäs, and P. Vainikainen, “Coupling element based mobile terminal antenna structures,” IEEE Trans. Antennas Propag., vol. 54, no. 7, pp. 2142-2153, 2006.
[47] J. Holopainen, R. Valkonen, O. Kivekäs, J. Ilvonen, and P. Vainikainen, “Broadband equivalent circuit model for capacitive coupling element–based mobile terminal antenna,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 716-719, 2010.
[48] J. Holopainen, J. Ilvonen, R. Valkonen, A.A.H. Azremi, and P. Vainikainen, “Study on the minimum required size of the low-band cellular antenna in variable-sized mobile terminals,” 6th European Conference on Antennas and Propagation (EuCAP), pp. 2754-2758, 2011.
[49] R. Valkonen, J. Ilvonen, and P. Vainikainen, “Naturally non-selective handset antennas with good robustness against impedance mistuning,” 6th European Conference on Antennas and Propagation (EuCAP), pp. 796-800, 2011.
[50] R. Valkonen, J. Ilvonen, C. Icheln, and P. Vainikainen, “Inherently non-resonant multi-band mobile terminal antenna,” Electron. Lett., vol. 49, no. 1, pp. 11-13, 2013.
[51] R. Valkonen, M. Kaltiokallio, and C. Icheln, “Capacitive coupling element antennas for multi-standard mobile handsets,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2783-2791, 2013.
[52] J. Ilvonen, R. Valkonen, J. Holopainen, and V. Viikari, “Design strategy for 4G handset antennas and a multiband hybrid antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1918-1927, 2014.
[53] P. W. Lin and K. L. Wong, “Dual-feed small-size LTE/WWAN strip monopole antenna for tablet computer applications,” Microwave Opt. Technol. Lett.. vol. 55, no. 11, pp. 2571-2576, 2013.
[54] K. L. Wong and L. Y. Chen, “Small-size LTE/WWAN tablet device antenna with two hybrid feeds,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2926-2934, 2014.
[55] K. L. Wong and M. T. Chen, “Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer,” IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6144-6151, 2013.
[56] S. H. Chang and W. J. Liao, “A broadband LTE/WWAN antenna design for tablet PC,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4354-4359, 2012.
[57] K. L. Wong, H. J. Jiang, and T. W. Weng, “Small-size planar LTE/WWAN antenna and antenna array formed by the same for tablet computer application,” Microwave Opt. Technol. Lett., vol. 55, no. 8, pp. 1928-1934, 2013.
[58] K. L. Wong and T. W. Weng, “Small-size triple-wideband LTE/WWAN tablet device antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1516-1519, 2013.
[59] K. L. Wong and P. J. Ma, “Small-size WWAN monopole slot antenna with dual-band band-stop matching circuit for tablet computer application,” Microwave Opt. Technol. Lett., vol. 54, no. 4, pp. 875-879, 2012.
[60] K. L. Wong and T. J. Wu, “Small-size LTE/WWAN coupled-fed loop antenna with band-stop matching circuit for tablet computer,” Microwave Opt. Technol. Lett., vol. 54, no. 5, pp. 1189-1193, 2012.
[61] K. H. Kim and S. O. Park, “Analysis of the small band-rejected antenna with the parasitic strip for UWB,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1688-1692, 2006.
.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top