跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/29 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智為
研究生(外文):Chih-wei Hsu
論文名稱:Gfi1 蛋白相撲化位置之研究
論文名稱(外文):Investigation of the SUMOylation sites of Gfi1
指導教授:陳和瑟陳和瑟引用關係
指導教授(外文):Angela Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:119
中文關鍵詞:共位相撲蛋白交互作用區域試管內相撲化反應相撲蛋白生長因子非依賴性蛋白1
外文關鍵詞:SIMColocalizationIn vitro SUMOylationSUMOGfi1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
轉錄抑制因子「生長因子非依賴性蛋白1」(Gfi1) 調節許多生物功能,例如顆粒球的生長、 T 細胞的分化,依賴巨噬細胞細胞素的產生,及內耳毛細胞的發育。此蛋白的 C 端含有六個 C2H2 型鋅手指 (zinc-finger),它的 N 端含有一段 20 個胺基酸,稱為 SNAG 的區域。Gfi1 C 端 C2H2 型鋅手指的存在使它成為一個可結合 DNA 的轉錄因子。Gfi1 上的第三、四、五個鋅手指可結合至重要的 DNA 保留性辨識序列 taAATCac(t/a)gca 上。另外,第一、二、六個鋅手指為此蛋白與其他蛋白質相互結合區域。相撲蛋白 (小的泛素相關修飾蛋白,SUMO) 有許多生物功能,包括對轉錄因子的調控。透過生物資訊方法的分析,我們發現 Gfi1 蛋白質序列上有四個重要位置含有相撲蛋白進行修飾 (相撲化反應SUMOylation) 的保留序列 (ΨKXE)。因此本研究便對 Gfi1 蛋白質上的相撲蛋白修飾位置進行探討。透過對保留序列的突變以及試管內相撲化反應來辨識 Gfi1 蛋白上相撲蛋白修飾的位置;並以螢光顯微鏡分析 Gfi1 蛋白和 SUMO 蛋白是否出現於細胞中的相同位置來探討它們間的相互作用。結果顯示,部份的Gfi1 蛋白和 SUMO 蛋白會共同出現於細胞中的相同位置,且 Gfi1 為 SUMO 修飾的目標蛋白。
The transcriptional repressor Growth Factor Independence 1 (Gfi1) regulates many biological functions, such as development of granulocytes, T-cell differentiation, macrophage-dependent cytokine production and the development of inner ear hair cells. It contains six C-terminal C2H2-type zinc-finger domains and a characteristic stretch of 20 amino acids, called the SNAG-domain, at its N-terminus. The presence of C2H2 zinc fingers suggested a function for Gfi1 as a DNA binding transcription factor. Zinc fingers 3–5 of Gfi1 are necessary for binding to its cognate consensus DNA recognition sequence taAATCac(t/a)gca, and zinc fingers 1, 2 and 6 have a role in interaction with other proteins. The small ubiquitin-related modifier (SUMO) has many roles in cellular biology including regulation of transcription factors. We found that there are four major SUMOylation predicted sites (ΨKXE) in Gfi-1 protein analyzed with bioinformatics. The SUMOylation site of the Gfi-1 protein was therefore investigated in the present studies. To identify the SUMOylation sites of Gfi1, mutants were used in in vitro SUMOylation assay. Fluorescence microscopy assay was used to investigate the interaction between Gfi1 and SUMO. Results suggest that Gfi1 and SUMO are colocalized partially and Gfi1 is a target protein for SUMO modification.
論文審定書...........................................i
論文公開授權書....................................ii
誌謝....................................................iii
摘要....................................................iv
Abstract..............................................v
縮寫表.................................................vi
壹、緒論..............................................1
一、Growth factor independence 1.........1
1.1 Gfi1 及同源蛋白質結構..................2
1.2 Gfi1/Senseless/Pag-3 ...................3
1.3 Gfi1 之活化表現 ...........................3
1.4 Gfi1 之生理功能 ...........................4
1.5 Gfi1 目標......................................5
1.6 Gfi1 調節顆粒性細胞......................5
1.7 Gfi1 調節 T 細胞生長、活化以及分化...........6
1.8 Gfi1 調節 B 細胞生長、活化以及分化...........6
1.9 Gfi1 之臨床診斷 ........................................8
二、 Small ubiquitin-related modifiers, SUMOs....9
2.1 SUMO......................................................9
2.2 SUMO 同型體及結構..................................9
2.3 SUMOylation..............................................10
2.4 調控蛋白質運輸..........................................13
2.5 調控核體組成.............................................13
2.6 調控粒線體分裂...........................................14
2.7 調節轉錄因子..............................................14
2.8 抑制 ubiquitin 降解.......................................14
2.9 調控細胞循環...............................................15
2.10 SUMO interacting Motifs...............................16
貳、研究目的........................................................18
參、實驗方法與材料...............................................20
一、 E.coli expression plasmids製備.......................20
二、 PCR 反應......................................................20
三、 DNA Cloning..................................................22
四、 Site-Directed Mutagenesis..............................26
五、 PCR overlapping extension mutagenesis.........29
六、 蛋白質表現、純化及保存................................30
七、 In vitro SUMOylation assay............................35
八、 蛋白質電泳與西方墨點法................................36
九、 細胞培養.......................................................40
十、 基因轉殖 (tranfection).....................................42
十一、免疫細胞化學法 (Immunocytochemistry, ICC) 44
十二、His pull down assay.....................................46
肆、結果...............................................................48
一、 試管中 Gfi1 蛋白的 SUMOylation (In vitro SUMOylation of Gfi1 protein)..48
二、 細胞中 Gfi1 蛋白與 SUMO 蛋白的相互作用 (In vivo interation between Gfi1 and SUMOs)....................................................................................................56
三、 Gfi1 蛋白 SUMOylation site 之辨識 (Identification of the Gfi1 SUMOylation site) ................................................................................................................60
四、 試管中 Gfi1 蛋白之 Pull down asssy (In vitro Pull down assay of Gfi1 protein).66
伍、討論...................................................................................................68
陸、未來工作.............................................................................................71
柒、參考文獻.............................................................................................72
捌、附錄....................................................................................................81
Azuma, Y., Arnaoutov, A., &; Dasso, M. (2003). SUMO-2/3 regulates topoisomerase II in mitosis. Journal of Cell Biology, 163(3), 477-487. doi: 10.1083/jcb.200304088
Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., . . . Shirakawa, M. (2005). Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature, 435(7044), 979-982. doi: 10.1038/nature03634
Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N., &; Elledge, S. J. (2002). The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell, 9(6), 1169-1182.
Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., &; Becker, J. (1998). Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol, 280(2), 275-286. doi: 10.1006/jmbi.1998.1839
Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., &; Schulman, B. A. (2002). Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. Journal of Biological Chemistry, 277(49), 47938-47945. doi: 10.1074/jbc.M207442200
Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., &; Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. Journal of Biological Chemistry, 279(26), 27233-27238. doi: 10.1074/jbc.M402273200
Bylebyl, G. R., Belichenko, I., &; Johnson, E. S. (2003). The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. Journal of Biological Chemistry, 278(45), 44113-44120. doi: 10.1074/jbc.M308357200
Capili, A. D., &; Lima, C. D. (2007). Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Current Opinion in Structural Biology, 17(6), 726-735. doi: 10.1016/j.sbi.2007.08.018
Chen, A., Wang, P. Y., Yang, Y. C., Huang, Y. H., Yeh, J. J., Chou, Y. H., . . . Li, S. S. L. (2006). SUMO regulates the cytoplasmonuclear transport of its target protein Daxx. Journal of Cellular Biochemistry, 98(4), 895-911. doi: 10.1002/jcb.20703
Chung, C. D., Liao, J. Y., Liu, B., Rao, X. P., Jay, P., Berta, P., &; Shuai, K. (1997). Specific inhibition of Stat3 signal transduction by PIAS3. Science, 278(5344), 1803-1805. doi: 10.1126/science.278.5344.1803
Comerford, K. M., Leonard, M. O., Karhausen, J., Carey, R., Colgan, S. P., &; Taylor, C. T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 986-991. doi: 10.1073/pnas.0337412100
David, G., Neptune, M. A., &; DePinho, R. A. (2002). SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. Journal of Biological Chemistry, 277(26), 23658-23663. doi: 10.1074/jbc.M203690200
Dieckhoff, P., Bolte, M., Sancak, Y., Braus, G. H., &; Irniger, S. (2004). Smt3/SUMO and Ubc9 are required for efficient APC/C‐mediated proteolysis in budding yeast. Molecular microbiology, 51(5), 1375-1387.
Dohmen, R. J. (2004). SUMO protein modification. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1695(1), 113-131.
Duan, Z. J., &; Horwitz, M. (2003). Targets of the transcriptional repressor oncoprotein Gfi-1. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5932-5937. doi: 10.1073/pnas.1031694100
Duprez, E., Saurin, A. J., Desterro, J. M., Lallemand-Breitenbach, V., Howe, K., Boddy, M. N., . . . Freemont, P. S. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. Journal of Cell Science, 112(3), 381-393.
Endter, C., Kzhyshkowska, J., Stauber, R., &; Dobner, T. (2001). SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11312-11317. doi: 10.1073/pnas.191361798
Epps, J. L., &; Tanda, S. (1998). The Drosophila semushi mutation blocks nuclear import of Bicoid during embryogenesis. Current Biology, 8(23), 1277-1280. doi: 10.1016/s0960-9822(07)00538-6
Everett, R. D., Earnshaw, W. C., Pluta, A. F., Sternsdorf, T., Ainsztein, A. M., Carmena, M., . . . Orr, A. (1999). A dynamic connection between centromeres and ND10 proteins. Journal of Cell Science, 112(20), 3443-3454.
Gareau, J. R., &; Lima, C. D. (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature reviews Molecular cell biology, 11(12), 861-871.
Geiss-Friedlander, R., &; Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol, 8(12), 947-956. doi: 10.1038/nrm2293
Gilks, C. B., Bear, S., Grimes, H. L., &; Tsichlis, P. N. (1993). Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein. Mol Cell Biol, 13(3), 1759-1768.
Gorlich, D., &; Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology, 15, 607-660. doi: 10.1146/annurev.cellbio.15.1.607
GRIMES, H. L., CHAN, T. O., ZWEIDLER-MCKAY, P. A., TONG, B., &; TSICHLIS, P. N. (1996). The Gfi-1 Proto-Oncoprotein Contains a Novel Transcriptional Repressor Domain, SNAG, and Inhibits G1 Arrest Induced by Interleukin-2 Withdrawal. Mol Cell Biol, 16, 6263–6272.
Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., . . . Muir, A. (2004). A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes. Nature Genetics, 36(8), 837-841.
Hannich, J. T., Lewis, A., Kroetz, M. B., Li, S. J., Heide, H., Emili, A., &; Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. Journal of Biological Chemistry, 280(6), 4102-4110.
Harder, Z., Zunino, R., &; McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology, 14(4), 340-345.
Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P., &; Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. Journal of Biological Chemistry, 281(23), 16117-16127. doi: 10.1074/jbc.M512757200
Hock, H., Hamblen, M. J., Rooke, H. M., Traver, D., Bronson, R. T., Cameron, S., &; Orkin, S. H. (2003). Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity, 18(1), 109-120. doi: 10.1016/s1074-7613(02)00501-0
Igwe, E., Kosan, C., Khandanpour, C., Sharif‐Askari, E., Brüne, B., &; Möröy, T. (2008). The zinc finger protein Gfi1 is implicated in the regulation of IgG2b production and the expression of Iγ2b germline transcripts. European journal of immunology, 38(11), 3004-3014.
Jackson, P. K. (2001). A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes &; Development, 15(23), 3053-3058. doi: 10.1101/gad.955501
Jafar-Nejad, H., &; Bellen, H. J. (2004). Gfi/Pag-3/senseless zinc finger proteins: a unifying theme? Mol Cell Biol, 24(20), 8803-8812. doi: 10.1128/MCB.24.20.8803-8812.2004
Ji, M., Li, H., Suh, H. C., Klarmann, K. D., Yokota, Y., &; Keller, J. R. (2008). Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood, 112(4), 1068-1077. doi: 10.1182/blood-2008-01-133504
Johnson, E. S. (2004). Protein modification by SUMO.
Johnson, E. S., Schwienhorst, I., Dohmen, R. J., &; Blobel, G. (1997). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. Embo Journal, 16(18), 5509-5519. doi: 10.1093/emboj/16.18.5509
Joseph, J., Liu, S. T., Jablonski, S. A., Yen, T. J., &; Dasso, M. (2004). The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Current Biology, 14(7), 611-617. doi: 10.1016/j.cub.2004.03.031
Karsunky, H., Mende, I., Schmidt, T., &; Moroy, T. (2002). High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene, 21(10), 1571-1579. doi: 10.1038/sj/onc/1205216
Karsunky, H., Zeng, H., Schmidt, T., Zevnik, B., Kluge, R., Schmid, K. W., . . . Moroy, T. (2002). Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nature Genetics, 30(3), 295-300. doi: 10.1038/ng831
Kerscher, O. (2007). SUMO junction - what''s your function? New insights through SUMO-interacting motifs. EMBO Rep, 8(6), 550-555. doi: 10.1038/sj.embor.7400980
Kerscher, O., Felberbaum, R., &; Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol., 22, 159-180.
Lee, G. W., Melchior, F., Matunis, M. J., Mahajan, R., Tian, Q. S., &; Anderson, P. (1998). Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. Journal of Biological Chemistry, 273(11), 6503-6507. doi: 10.1074/jbc.273.11.6503
Li, H., Ji, M., Klarmann, K. D., &; Keller, J. R. (2010). Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood, 116(7), 1060-1069. doi: 10.1182/blood-2009-11-255075
Li, S. J., &; Hochstrasser, M. (1999). A new protease required for cell-cycle progression in yeast. Nature, 398(6724), 246-251.
Lin, D.-Y., Huang, Y.-S., Jeng, J.-C., Kuo, H.-Y., Chang, C.-C., Chao, T.-T., . . . Shih, H.-M. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell, 24(3), 341-354. doi: 10.1016/j.molcel.2006.10.019
Lin, X., Sun, B. H., Liang, M., Liang, Y. Y., Gast, A., Hildebrand, J., . . . Feng, X. H. (2003). Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell, 11(5), 1389-1396. doi: 10.1016/s1097-2765(03)00175-8
Mahajan, R., Delphin, C., Guan, T., Gerace, L., &; Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97-107.
Mahajan, R., Gerace, L., &; Melchior, F. (1998). Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. Journal of Cell Biology, 140(2), 259-270. doi: 10.1083/jcb.140.2.259
Matunis, M. J., Coutavas, E., &; Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. Journal of Cell Biology, 135(6), 1457-1470. doi: 10.1083/jcb.135.6.1457
McGhee, L., Bryan, J., Elliott, L., Grimes, H. L., Kazanjian, A., Davis, J. N., &; Meyers, S. (2003). Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. Journal of Cellular Biochemistry, 89(5), 1005-1018. doi: 10.1002/jcb.10548
Minty, A., Dumont, X., Kaghad, M., &; Caput, D. (2000). Covalent modification of p73 alpha by SUMO-1 - Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. Journal of Biological Chemistry, 275(46), 36316-36323. doi: 10.1074/jbc.M004293200
Moroy, T. (2005). The zinc finger transcription factor Growth factor independence 1 (Gfi1). Int J Biochem Cell Biol, 37(3), 541-546. doi: 10.1016/j.biocel.2004.08.011
Negorev, D., &; Maul, G. G. (2001). Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene, 20(49), 7234-7242. doi: 10.1038/sj.onc.1204764
Owerbach, D., McKay, E. M., Yeh, E. T. H., Gabbay, K. H., &; Bohren, K. M. (2005). A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and Biophysical Research Communications, 337(2), 517-520. doi: 10.1016/j.bbrc.2005.09.090
Person, R., Li, F., Duan, Z., Benson, K., Wechsler, J., Papadaki, H., . . . Nakamoto, B. (2003). Gfi1 proto-oncogene mutation causes human neutropenia and targets neutrophil elastase. Nature Genet, 34, 308-312.
Pichler, A., Gast, A., Seeler, J. S., Dejean, A., &; Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108(1), 109-120. doi: 10.1016/s0092-8674(01)00633-x
Powell, L. M., Chen, A., Huang, Y. C., Wang, P. Y., Kemp, S. E., &; Jarman, A. P. (2012). The SUMO Pathway Promotes Basic Helix-Loop-Helix Proneural Factor Activity via a Direct Effect on the Zn Finger Protein Senseless. Mol Cell Biol, 32(14), 2849-2860. doi: 10.1128/mcb.06595-11
Purohit, S. J., Stephan, R. P., Kim, H. G., Herrin, B. R., Gartland, L., &; Klug, C. A. (2003). Determination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. Embo Journal, 22(20), 5511-5521. doi: 10.1093/emboj/cdg522
Rödel, B., Wagner, T., Zörnig, M., Niessing, J., &; Möröy, T. (1998). The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34. 13—a locus frequently altered in hematopoietic diseases. Genomics, 54(3), 580-582.
Rangasamy, D., Woytek, K., Khan, S. A., &; Wilson, V. G. (2000). SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. Journal of Biological Chemistry, 275(48), 37999-38004. doi: 10.1074/jbc.M007777200
Rathinam, C., &; Klein, C. (2007). Transcriptional Repressor Gfi1 Integrates Cytokine-Receptor Signals Controlling B-Cell Differentiation. Plos One, 2(3). doi: 10.1371/journal.pone.0000306
Rathinam, C., Lassmann, H., Mengel, M., &; Klein, C. (2008). Transcription Factor Gfi1 Restricts B Cell-Mediated Autoimmunity (Retracted article. See vol. 189, pg. 3777, 2012). Journal of Immunology, 181(9), 6222-6229.
Rodel, B., Tavassoli, K., Karsunky, H., Schmidt, T., Bachmann, M., Schaper, F., . . . Moroy, T. (2000). The zinc finger protein Gfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3. Embo Journal, 19(21), 5845-5855. doi: 10.1093/emboj/19.21.5845
Rodel, B., Wagner, T., Zornig, M., Niessing, J., &; Moroy, T. (1998). The human homologue (GFI1B) of the chicken GFI gene maps to chromosome 9q34.13 - A locus frequently altered in hematopoietic diseases. Genomics, 54(3), 580-582. doi: 10.1006/geno.1998.5601
Rodriguez, M. S., Dargemont, C., &; Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. Journal of Biological Chemistry, 276(16), 12654-12659. doi: 10.1074/jbc.M009476200
Saitoh, H., &; Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry, 275(9), 6252-6258.
Saleque, S., Kim, J., Rooke, H. M., &; Orkin, S. H. (2007). Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell, 27(4), 562-572. doi: 10.1016/j.molcel.2007.06.039
Salina, D., Enarson, P., Rattner, J. B., &; Burke, B. (2003). Nup358 integrates nuclear envelope breakdown with kinetochore assembly. Journal of Cell Biology, 162(6), 991-1001. doi: 10.1083/jcb.200304080
Scheijen, B., Jonkers, J., Acton, D., &; Berns, A. (1997). Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 transgenic mice. Journal of virology, 71(1), 9-16.
Schmidt, T., Karsunky, H., Gau, E., Zevnik, B., Elsässer, H.-P., &; Möröy, T. (1998). Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene, 17(20), 2661-2667.
Schwienhorst, I., Johnson, E. S., &; Dohmen, R. J. (2000). SUMO conjugation and deconjugation. Molecular and General Genetics, 263(5), 771-786.
Shih, H. M., Chang, C. C., Kuo, H. Y., &; Lin, D. Y. (2007). Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochemical Society Transactions, 35, 1397-1400. doi: 10.1042/bst0351397
Shilo, Y., &; Eisenman, R. N. (2003). Histone sumoylation is associated with transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13225-13230. doi: 10.1073/pnas.1735528100
Sobko, A., Ma, H., &; Firtel, R. A. (2002). Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Developmental Cell, 2(6), 745-756. doi: 10.1016/s1534-5807(02)00186-7
Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., &; Chen, Y. A. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14373-14378. doi: 10.1073/pnas.0403498101
Song, J., Zhang, Z. M., Hu, W. D., &; Chen, Y. (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif - A reversal of the bound orientation. Journal of Biological Chemistry, 280(48), 40122-40129. doi: 10.1074/jbc.M507059200
Spooner, C. J., Cheng, J. X., Pujadas, E., Laslo, P., &; Singh, H. (2009). A Recurrent Network Involving the Transcription Factors PU.1 and Gfi1 Orchestrates Innate and Adaptive Immune Cell Fates. Immunity, 31(4), 576-586. doi: 10.1016/j.immuni.2009.07.011
Stead, K., Aguilar, C., Hartman, T., Drexel, M., Meluh, P., &; Guacci, V. (2003). Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. Journal of Cell Biology, 163(4), 729-741. doi: 10.1083/jcb.200305080
Sternsdorf, T., Jensen, K., &; Will, H. (1997). Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. Journal of Cell Biology, 139(7), 1621-1634. doi: 10.1083/jcb.139.7.1621
Tong, B., Grimes, H. L., Yang, T.-Y., Bear, S. E., Qin, Z., Du, K., . . . Tsichlis, P. N. (1998). The Gfi-1B Proto-Oncoprotein Repressesp21WAF1 and Inhibits Myeloid Cell Differentiation. Mol Cell Biol, 18(5), 2462-2473.
Van der Meer, L., Jansen, J., &; van der Reijden, B. (2010). Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia, 24(11), 1834-1843.
Vertegaal, A. C. O., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann, M., &; Lamond, A. I. (2006). Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Molecular &; Cellular Proteomics, 5(12), 2298-2310. doi: 10.1074/mcp.M600212-MCP200
Vijay-Kumar, S., Bugg, C., Wilkinson, K., Vierstra, R., Hatfield, P., &; Cook, W. (1987). Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. Journal of Biological Chemistry, 262(13), 6396-6399.
Wallis, D. (2003). The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development, 130(1), 221-232. doi: 10.1242/dev.00190
Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., . . . Pandolfi, P. P. (1998). Role of PML in cell growth and the retinoic acid pathway. Science, 279(5356), 1547-1551.
Wang, Z. G., Ruggero, D., Ronchetti, S., Zhong, S., Gaboli, M., Rivi, R., &; Pandolfi, P. P. (1998). Pml is essential for multiple apoptotic pathways. Nature Genetics, 20(3), 266-272.
Watson, I. R., &; Irwin, M. S. (2006). Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia, 8(8), 655-666. doi: 10.1593/neo.06439
Wood, L. D., Irvin, B. J., Nucifora, G., Luce, K. S., &; Hiebert, S. W. (2003). Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3257-3262. doi: 10.1073/pnas.0637114100
Yang, S. H., &; Sharrocks, A. D. (2004). SUMO promotes HDAC-mediated transcriptional repression. Mol Cell, 13(4), 611-617. doi: 10.1016/s1097-2765(04)00060-7
Yucel, R., Karsunky, H., Klein-Hitpass, L., &; Moroy, T. (2003). The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit(+) T cell progenitors and CD4/CD8 lineage decision in the thymus. Journal of Experimental Medicine, 197(7), 831-844. doi: 10.1084/jem.20021417
Yucel, R., Kosan, C., Heyd, F., &; Moroy, T. (2004). Gfi1 : Green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. Journal of Biological Chemistry, 279(39), 40906-40917. doi: 10.1074/jbc.M400808200
Zhu, J. F., Guo, L. Y., Min, B. K., Watson, C. J., Hu-Li, J., Young, H. A., . . . Paul, W. E. (2002). Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity, 16(5), 733-744. doi: 10.1016/s1074-7613(02)00317-5
Zweidler-McKay, P. A., Grimes, H. L., Flubacher, M. M., &; Tsichlis, P. N. (1996). Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol Cell Biol, 16(8), 4024-4034.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top