跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳致霖
研究生(外文):Chih-Lin Chen
論文名稱:適用於車載網路通訊系統之FlexRay傳送接收器與電壓監控晶片之設計與實現
論文名稱(外文):Design and Implementation of FlexRay Transceiver and Voltage Monitoring IC for Automotive Communication Systems
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:99
中文關鍵詞:高壓傳送接收器高壓多工器高壓靜電防護電路高壓二極體FlexRay 傳送接收器高壓積體電路
外文關鍵詞:FlexRay transceiverhigh-voltage VLSIhigh-voltage diodehigh-voltage ESDhigh-voltage multiplexerhigh-voltage transceiver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製程的演進,車載網路系統的晶片化趨勢越來越明顯,尤其是當高壓的半導體製程技術變得越來越成熟,更加速此一趨勢。然而,在高壓半導體製程元件的使用上有許多的限制,所以需要特殊的保護電路來防止電晶體過壓而 發生故障。因此,本論文提出了多種的高壓防護電路在車載網路的傳送接收器和 電池管理系統晶片的應用上,包含FlexRay傳送接收器、高壓多工器、高壓傳送接收器等。

本論文首先提出了一個適用於車載網路的FlexRay傳送接收器,符合FlexRay實體層的規範。為了使FlexRay傳送接收器免於高壓的危險,同時也提出過壓偵測器、高壓二極體和高壓靜電防護電路。

此外,在車用的電池管理系統設計上,本論文提出了一個電壓監控晶片,包含高壓多工器和高壓傳送接收器。其中,高壓多工器為轉換電池組的電壓至類比數位轉換器的輸入範圍。而高壓傳送接收器則可以讓相鄰的電壓監控晶片互相傳 送資料,並且不需要使用額外的高壓隔離元件。

最後,FlexRay傳送接收器和電壓監控晶片皆使用高壓製程實現,以驗證高壓防護電路功能的正確性。並利用市售的車用網路晶片來驗證本論文設計之 FlexRay傳送接收器的通訊功能,也使用恆溫儀器和紅外線溫度顯示儀器來驗證晶片在不同溫度和電壓時是否功能正常。而本論文提出之電壓監控晶片可以監控 8 個電池串接的電池組和傳送接收正負32 伏特的資料訊號。最後,本論文展示了一個電壓監控晶片的模組。
In-vehicle systems on silicon became very popular when high-voltage (HV) technologies were affordable owing to the evolution of silicon semiconductor technology. However, the transistors of these HV processes usually are constrained by voltage limitations between certain terminals therewith. To overcome the limitation as well as secure the reliability, this thesis proposes many HV protection designs used in automobile networking systems and battery management systems.

This thesis firstly presents a FlexRay transceiver implemented by a HV CMOS process compliant with FlexRay physical layer standards. Notably, over-voltage detectors, HV diodes, and HV ESDs are proposed therewith to protect the FlexRay transceiver from HV hazards.

Meanwhile, a voltage monitoring IC used in in-vehicle battery management systems is also proposed in this thesis, where HV multiplexer is used to convert the voltage of battery module into the input range of ADCs. The HV transceivers can transmit and receive data between adjacent voltage monitoring ICs without the presence of any HV isolators.

Finally, the FlexRay transceiver and voltage monitoring IC both are implemented using HV processes to justify their performance. Measurement results include functional verification to communicate with commercially available FlexRay transceivers, and reliability test given in -40 ~ +125℃ temperature range. Notably, an experimental prototype of voltage monitoring IC can monitor a series of 8 batteries and transmit/receive data with a common mode voltage between -32 ~ +32 V.
論文審定書i
中文摘要iii
Abstract iv
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 FlexRay-based System . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Battery Electrical Vehicle (BEV) . . . . . . . . . . . . . . . . 5
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 FlexRay Transceiver . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 HV Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 HV Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Organization of The Thesis . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 2 A FlexRay Transceiver with 60 V Tolerance and ESD Protection for Automotive Communication Systems 16
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Architecture of the Bus Driver for FlexRay- based Systems . . . . . . 17
2.3 Architecture of the Proposed 60 V Tolerant FlexRay Transceiver with
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 FlexRay Transmitter (FTx) . . . . . . . . . . . . . . . . . . . 20
2.3.2 FlexRay Receiver (FRx) . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 HV Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 HV ESD (HVESD) . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . 32
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 3 A Voltage Monitoring IC with HV Multiplexer and HV Transceiver 45
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 BIM System Specifications . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 HV Multiplexer (HVMUX) . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 HV MOSs &; HV switches . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Level-shift circuit . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 HV subtractors &; dividers . . . . . . . . . . . . . . . . . . . . 52
3.3.4 LV multiplexer &; LV multiplier . . . . . . . . . . . . . . . . . 54
3.4 HV Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 TX_H and TX_L . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 RX_H and RX_L . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Implementation and Measurement . . . . . . . . . . . . . . . . . . . . 60
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Chapter 4 Conclusion and Future Work 68
4.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bibliography 72
[1] http://www.can-cia.org
[2] http://www.lin-subbus.org
[3] H. Schopp and D. Teichner, “Video and audio applications in vehicles enabled
by networked systems,” in Proc. Inter. Conf. on Consumer Electronics, Jun.
1999, pp. 218-219.
[4] Fujitsu Microelectronics (Shanghai) Co.,Ltd., “Next generation car network -
FlexRay,” (http://www.fujitsu.com/downloads/CN/fmc/lsi/FlexRay-EN.pdf),
Jun. 2006.
[5] FlexRay Communication System Electrical Physical Layer Specification V3.0.1
(http : //www:flexray:com), 2010.
[6] D. Paret, FlexRay and its Applications: Real Time Multiplexed Network, A
John Wiley &; Sons, Ltd., 2012, pp. 11-13.
[7] FlexRay Preliminary Node-Local Bus Guardian Specification V2.0.9, 2005.
[8] FlexRay Communications System Protocol Specification, V3.0.1, 2010.
[9] N. Noda, “21st century cars and ICs,” in Proc. IEEE Inter. Solid-State Circuits
Conf., Feb. 2000, pp. 12-17.
[10] 江文書, “台灣電動車運行基礎設施現況與未來,” 第24 屆近代工程技術研討
會, 2012.
[11] C. Gould, “EV/ HEV Li-ion battery modelling and state-of-function
determination,” in Proc. Inter. Symposium on Power Electronics, Electrical
Drives, Automation and Motion, Jun. 2012, pp. 353-358.
[12] I. Gravagne, “Time scale-based observer design for battery state-of-charge
estimation,” in Proc. Southeastern Symposium on System Theory, Mar. 2012,
pp. 12-17.
[13] Z. Zhendong, L. Zihan, and H. Nan, “The VRLA internal resistance on-line
measuring device,” in Proc. Inter. Conf. on Information Management,
Innovation Management and Industrial Engineering, Oct. 2012, pp. 404-406.
[14] S. X. Chen, “Modelling of lithium-ion battery for online energy management
systems,” IET Electrical Systems in Transportation, vol. 2, no. 4, pp. 202-210,
Dec. 2012.
[15] M. Verbrugge and E. Tate, “Adaptive state of charge algorithm for nickel metal
hydride batteries including hysteresis phenomena,” J. of Power Sources, vol.
126, no. 1-2, pp. 236–249, Feb. 2004.
[16] B. Xiao, Y. Shi, and L. He, “A universal state-of-charge algorithm for batteries,”
in Proc. IEEE Design Automation Conf., Jun. 2010, pp. 687-692.
[17] 孫建中, “電池管理系統簡介,” 電動車電池能量管理技術發展論壇, 2012.
[18] D. Andrea, Battery Management Systems for Large Lithium-Lon Battery Packs,
MA: Artech House, 2010, pp. 47-52.
[19] C. Mikolajczak, M. Kahn, K. White, and R. T. Long, Lithium-ion batteries
hazard and use assessment, Springer, 2011, pp. 59-60.
[20] Z.-G. Kong, C.-B. Zhu, R.-G. Ru, and S.-K. Cheng, “Comparison and
evaluation of charge equalization technique for series connected batteries,”in
Proc. IEEE Power Electronics Specialists Conf., Jun. 2006, pp. 1-6.
[21] S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries:
issues and life test results,” in Proc. Inter. Telecommunications Energy Conf.,
Sep. 2000, pp. 439-446.
[22] A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery
charge equalization technique,” IEEE Trans. on Industrial Electronics, vol. 55,
no. 6, pp. 2277-2285, Jun. 2008.
[23] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Design
considerations for charge equalization of an electric vehicle battery system,”
IEEE Trans. on Industry Applications, vol. 35, no. 1, pp. 28-35, Feb. 1999.
[24] W. Jiang and B. Fahimi, “Phase-shift controlled multilevel bidirectional DC/
DC converter: a novel solution to battery charge equalization in fuel cell
vehicle,” in Proc. IEEE Vehicle Power and Propulsion Conf., Sep. 2007, pp.
587-590.
[25] Y.-S. Lee, M.-W. Chen, K.-L. Hsu, J.-Y. Du, and C.-F. Chuang,
“Cell equalization scheme with energy transferring capacitance for series
connected battery strings,” in Proc. IEEE Region 10 Conf. on Computers,
Communications, Control and Power Engineering, Oct. 2002, pp. 2042-2045.
[26] C.-S. Lim, K.-J. Lee, N.-J. Ku, D.-S. Hyun, and R.-Y. Kim, “A modularized
equalization method based on magnetizing energy for a series-connected lithium-ion battery string,” IEEE Trans. on Power Electronics, vol. 29, no.
4, pp. 1791-1799, Apr. 2014.
[27] K. Kadirvel, J. Carpenter, R. Shoemaker, J. M. Ross, P. Huynh, and B.
Lum-Shue-Chan, “A stackable, 6-cell, Li-Ion, battery management IC for
electric vehicles with 13, 12-bit ΣΔ ADCs, cell balancing, and direct-connect
current-mode communications,” in Proc. Symposium on VLSI Circuit, Jun.
2013, pp. C232-C233.
[28] K. Kadirvel, J. Carpenter, P. Huynh, J. M. Ross, R. Shoemaker, and B.
Lum-Shue-Chan, “A stackable, 6-cell, Li-Ion, battery management IC for
electric vehicles with 13, 12-bit ΣΔ ADCs, cell balancing, and direct-connect
current-mode communications,” IEEE J. of Solid-State Circuits, vol. 49, no. 4,
pp. 928-934, Apr. 2014.
[29] D. Lim and A. Anbuky, “Modelling and simulation of a distributed battery
management system,” in Proc. IEEE Inter. Symposium Industrial Electronics,
May 2004, pp. 621-626.
[30] J. Chatzkis, K. kalaitzakis, N. C. Voulgaris, and S. N. Manias, “Designing
a new generalized battery management system,” IEEE Trans. on Industrial
Electronics, vol. 50, no. 5, pp. 990-999, Oct. 2003.
[31] O2Micro DataSheet:OZ890, High Power BMU, 2007.
[32] Texas Instruments DataSheet:Bq76PL536, 3 to 6 Series Cell Lithium-Ion
Battery Monitor and Secondary Protection IC for EV and HEV Applications,
2010.
[33] Analog Devices DataSheet:AD7280, Lithium Ion Battery Monitoring System,
2008.
[34] Linear Technology DataSheet:LTC6802, Multicell Battery Stack Monitor,
2009.
[35] R. Kliger, “Integrated transformer-coupled isolation,” IEEE Instrumentation &;
Measurement Magazine, vol. 6, no. 1, pp. 16-19, Mar. 2003.
[36] C.-H. Hsu, K.-C. Chang, Y.-C. Ou, K.-Y. Liao, and C.-L. Wey, “On the
implementation of CAN buses to battery management systems,” in Proc. IEEE
Inter. Midwest Symposium on Circuits and Systems, Aug. 2011, pp. 1-4.
[37] S. Wayne, “iCoupler digital isolators protect RS-232, RS-485, and CAN buses
in industrial, instrumentation, and computer applications,” Analog Dialogue,
vol. 39, pp. 1-4, Oct. 2005. Available: http:// www.analog.com/ library/
analogDialogue/archives/39-10/iCoupler.html
[38] S. Kaeriyama, S. Uchida, M. Furumiya, M. Okada, T. Maeda, and M. Mizuno,
“A 2.5 kV isolation 35 kV/us CMR 250 Mbps digial isolator in standard CMOS
with a small transformer driving technique,” IEEE J. of Solid-State Circuits,
vol. 47, no. 2, pp. 435-443, Feb. 2012.
[39] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G.
Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M.
Cifrain, and W. Prochazka, “Batteries and battery management systems for
electric vehicles,” in Proc. Design, Automation &; Test in Europe Conf. &;
Exhibition, Mar. 2012, pp. 971-976.
[40] M. Kikuchi, T. Sase, M. Inaba, A. Watanabe, N. Akiyama, and F. Murabayashi,
“On-chip 500V capacitive isolator for 1 Mbps CAN transceiver” in Proc. Inter.
CAN Conf., Apr. 2002, pp. 03-09.
[41] V. R. H. Lorentz, M. M. Wenger, J. L. Grosch, M. Giegerich, M. P. M. Jank,
M. M¨arz, and L. Frey, “Novel cost-efficient contactless distributed monitoring
concept for smart battery cells,” in Proc. IEEE Inter. Symposium Industrial
Electronics, May 2012, pp. 1342-1347.
[42] C.-C. Wang, G.-N. Sung, P.-C. Chen, and C.-L. Wey, “A transceiver frontend for
electronic control units in FlexRay-based automotive communication systems,”
IEEE Trans. on Circuits and Systems I: Regular Paper, vol. 57, no. 2, pp.
460-470, Jan. 2010.
[43] C.-C. Wang, C.-L. Chen, J.-J. Li, G.-N. Sung, T.-H. Yeh, and C.-Y. Juan,
“A low-power transceiver design for FlexRay-based communication systems,”
Microelectronics J., vol. 44, no. 4, pp. 359-366, Apr. 2013.
[44] S.-H. Zheng, Z.-M. Lin, and D.-C. Liaw, “Transceiver design for the bus driver
of the FlexRay communication system,” in Proc. Society of Instrument and
Control Engineers Annual Conf., Aug. 2010, pp. 3625-3630.
[45] Y.-N. Xu, C.-H. Jeon, and J.-G. Chung, “Design of FlexRay communication
network using active star,” Modern Applied Science, vol. 4, no. 4, pp. 34-41,
Apr. 2010.
[46] F. Baronti, P. D’Abramo, M. Knaipp, R. Minixhofer, R. Roncella, R. Saletti, M.
Schrems, R. Serventi, and V. Vescoli, “FlexRay transceiver in a 0.35 m CMOS high-voltage technology,” in Proc. Design, Automation and Test in Europe, vol.
2, Mar. 2006, pp. 1-5.
[47] F. Baronti, E. Petri, S. Saponara, L. Fanucci, R. Roncella, R. Saletti, P.
D’Abramo, and R. Serventi, “Design and verification of hardware building
blocks for high-speed and fault-tolerant in-vehicle networks,” IEEE Trans. on
Industrial Electronics, vol. 58, no. 3, pp. 792-801, Mar. 2011.
[48] NXP DataSheet: TJA1080, FlexRay Transceiver, Jul. 2007.
[49] H. Casier, P. Moens, and K. Appeltans, “Technology considerations for
automotive,” in Proc. European Solid-State Circuits Conf., Sep. 2004, pp. 37-41.
[50] A. Danchiv, M. Hulub, and D. Manta, “An area efficient multi-channel high
side switch implementation,” in Proc. European Solid-State Circuits Conf., Sep.
2011, pp. 327-330.
[51] A. Gendron, C. Gill, C. Zhan, M. Kaneshiro, B. Cowden, C. Hong, R.
Ida, and D. Nguyen, “New high voltage ESD protection devices based on
bipolar transistors for automotive applications,” in Proc. Electrical Overstress/
Electrostatic Discharge Symposium, Sep. 2011, pp. 1-10.
[52] R. Zhu, F. Yao, S. Wang, A. Wang, L. Wu, X. Zhang, and B. Chi, “A
study of process/device/layout co-design for full-chip ESD protection in BCD
technology,” in Proc. IEEE Inter. Solid-State Integrated Circuit Technology,
Oct. 2012, pp. 1-3.
[53] C.-K. Chen, C.-F. Huang, Y.-F. Chang, J.-W. Lee, S.-M. Cheng, and M.-H.
Song, “Schottky emitter high holding voltage ESD clamp in BCD power technology” in Proc. Elecrtical Overstress/Electrostatic Discharge Symposium,
Sep. 2012, pp. 1-6.
[54] W.-Y. Chen and M.-D. Ker, “Circuit and layout co-design for ESD protection in
Bipolar-CMOS-DMOS (BCD) high-voltage process,” IEEE Trans. on Circuits
and Systems I: Regular Paper, vol. 57, no. 5, pp. 1039-1047, May 2010.
[55] C.-L. Chen, D.-S. Wang, J.-J. Li, and C.-C. Wang, “A voltage monitoring IC
with HV multiplexer and HV transceiver for battery management systems,”
IEEE Trans. on Very Large Scale Integration, pp. 1-10, Feb. 2014.
[56] C.-C. Wang, C.-L. Chen, Z.-Y. Hou, Y. Hu, J.-W. Lee, W.-Y.
Lin, Y.-F. Chang, C.-W. Hsu, and M.-H. Song, “A 60V tolerance
transceiver with ESD protection for FlexRay-based communication
systems,” IEEE Trans. on Circuits and Systems I: Regular Paper, Dec.
2014. (accepted) Available: http:// ieeexplore.ieee.org/ stamp/ stamp.jsp?
tp=&;arnumber=6979277&;isnumber=4358591
[57] E. K. F. Lee, “High-voltage tolerant stimulation monitoring circuit in
conventional CMOS process,” in Proc. Custom Integrated Circuits Conf., Sep.
2009, pp. 93-96.
[58] K. P. Ng, M. C. Lee, W. T. Chan, R. Barsatan, and M. Chan, “Universal
high voltage multiplexer for CMOS OTP memory applications,” in Proc. IEEE
Inter. Conf. on Electron Devices and Solid-State Circuits, Dec. 2008, pp. 1-4.
[59] K. Hara, J. Sakano, M. Mori, S. Tamano, R. Sinomura, and K. Yamazaki,
“A new 80V 32 32ch low loss multiplexer LSI for a 3D ultrasound imaging system,” in Proc. Inter. Symposium on Power Semiconductor Devices and ICs,
May 2005, pp. 359-362.
[60] J. Borg and J. Johansson, “An ultrasonic transducer interface IC with
integrated push-pull 40 Vpp, 400 mA current output, 8-bit DAC and integrated
HV multiplexer,” IEEE J. of Solid-State Circuits, vol. 46, no. 2, pp. 475-484,
Feb. 2011.
[61] D. A. Adams, H. A. Barnes, M. D. Fitzpatrick, N. P. Goldstein, W. L. Hand,
W. L. Jackson, R. Koga, M. B. Pennock, H. J. Remenapp, and J. T. Smith, “A
radiation hardened high voltage 16:1 analog multiplexer for space applications
(NGCP3580),” in Proc. IEEE Radiation Effects Data Workshop, Jul. 2008, pp.
82-84.
[62] S. Singamala, M. Brandl, S. Vernekar, V. Vulligadala, R. Adusumalli, and
V. Ele, “Design of AFE and PWM drive for lithium-ion battery management
system for HEV/EV system,” in Proc. Inter. Conf. on VLSI Design and Inter.
Conf. on embedded systems, Jan. 2014, pp. 186-191.
[63] M. Schneider, S. Ilgin, N. Jegenhorst, R. Kube, S. P¨uttjer, K.-R. Riemschneider,
and J. Vollmer, “Automotive battery monitoring by wireless cell sensors,” in
Proc. IEEE Inter. Instrumentation and Measurement Technology Conf., May
2012, pp. 816-820.
[64] C.-C. Wang, C.-L. Chen, G.-N. Sung, C.-L. Wang, and C.-Y. Juan, “A FlexRay
transceiver design with bus guardian for FlexRay-based communication
systems,” J. of Signal Processing Systems, vol. 74, pp. 221-233, Feb. 2014.
[65] C.-C. Wang, C.-L. Chen, J.-J. Li, and G.-N. Sung, “A low power wake up detector for ECU nodes in an automobile FlexRay system,” in Proc. IEEE
Inter. Conf. on Consumer Electronics, Jan. 2011, pp. 519-520.
[66] C.-L. Chen, Z.-Y. Hou, S.-C. Lin, and C.-C. Wang, “A delay-based transceiver
with over-current protection for ECU nodes in automobile FlexRay systems,”
in Proc. Inter. Conf. on Consumer Electronics, Jan. 2013, pp. 610-611.
[67] C.-C. Wang, C.-L. Lee, C.-Y. Hsiao, and J.-F. Huang, “Clock recovery and data
recovery design for LVDS transceiver used in LCD panels,” in Proc. IEEE Asia
Pacific Conf. on Circuits and Systems, Dec. 2004, pp. 861-864.
[68] R. J. Baker, H.W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and
Simulation. Piscataway, NJ: IEEE Press, 2010, pp. 909-919.
[69] D. Paret, FlexRay and its Applications: Real Time Multiplexed Network, A
John Wiley &; Sons, Ltd., 2012, pp. 138-142.
[70] FlexRay Electrical Physical Layer Application Notes V3.0.1, 2010.
[71] TDK DataSheet: ACT45R-101-2P, Common Mode Filters for FlexRay, Nov.
2013.
[72] Austriamircosystems DataSheet: AS8223, FlexRay Active Star IC, Nov. 2010.
[73] R. Horgervorst, J. P. Tero, G. H. Eschauzier, and J. H. Huijsing, “A compact
power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for
VLSI cell libraries,” IEEE J. of Solid-State Circuits, vol. 29, no. 12, pp.
1505-1513, Dec. 1994.
[74] C.-L. Chen, Y. Hu, W. Luo, C.-Y. Juan, and C.-C. Wang, “A high voltage analog multiplexer with digital calibration for battery management systems,”
in Proc. IEEE Inter. Conf. on IC Design &; Technology, May 2012, pp. 1-4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文