跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹宗杰
研究生(外文):Tsung-Chieh Chan
論文名稱:高性能低溫多晶矽薄膜電晶體之研究
論文名稱(外文):Study of High Performance Low-Temperature Poly-Si Thin-Film Transistors
指導教授:馬誠佑
指導教授(外文):Cheng-Yu Ma
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:短通道效應金屬誘發側向結晶法固相結晶法多晶矽薄膜電晶體高介電常數材料當介電層
外文關鍵詞:Metal-induced lateral crystallization (MILC)High-k Gate Dielectricshort channel effect (SCE)Solid Phase Crystallization (SPC)low-temperature poly-Si thin film transistors (LTPS-TFTs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
多晶矽薄膜電晶體因為具有較高的載子遷移率,所以被認為可以廣泛的應用
在主動矩陣式液晶顯示器的開關元件上。而為了提升元件的特性,元件的尺寸不
斷的微縮下去,勢必會發生一些非理想效應,此時就有人提出些許方法可以在維
持元件尺寸大小情況下,提升元件的電特性。
多晶矽薄膜電晶體為了提升元件特性,可以對氧化層厚度做適當的微縮,但
是當微縮到一定厚度時,會因為氧化層厚度太薄的關係,而產生不可預期的閘極
漏電流,且氧化層厚度太薄也有可靠度的問題存在;另外,過多的晶粒界面及缺陷
存在於通道中將大幅地劣化多晶矽薄膜電晶體的特性。
金屬誘發側向結晶法減少了晶粒邊界以及存在於通道中的缺陷,而高介電常
數材料當介電層會大幅提升閘極電容值,進而提升元件特性。
本篇論文中,使用了金屬誘發側向結晶法的方式並且搭配高介電常數材料當
介電層,大幅的提升元件的特性,與傳統的固相結晶法搭配二氧化矽當介電層相
比,有著非常好的電特性,包括了載子遷移率和次臨界擺福。另外,其對於短通
道效應量測和變溫量測之電性變化,也將進行探討。
High performance low-temperature poly-Si thin film transistors (LTPS-TFTs) have
been intensively investigated for the application of the active matrix liquid-phase crystal
displays. In this article, high performance LTPS-TFTs are fabricated by using HfO2 gate
dielectric and with Metal-induced lateral crystallization (MILC) channel layer.
MILC LTPS-TFT with High-k Gate Dielectric, high field-effect mobility , ultralow
subthreshold swing are achieved without any defect passivation methods. These
significant improvements are due to the MILC channel film and the very high
gate-capacitance density provided by HfO2 gate dielectric.
In Solid Phase Crystallization (SPC)-TFT’s, the grain boundaries are randomly
oriented. It is also observed in this work that while the MILC-TFT with High-k Gate
Dielectric are less sensitive to short channel effect (SCE).
目錄
論文審定書 ............................................................................................................... i
論文公開授權書 ...................................................................................................... ii
致謝 ......................................................................................................................... iii
摘要 ......................................................................................................................... iv
Abstract ..................................................................................................................... v
表目錄 ................................................................................................................... viii
圖目錄 ..................................................................................................................... ix
第一章 緒論 ...................................................................................................... 1
1-1 薄膜電晶體基本架構 ................................................................................................ 1
1-1-1 薄膜電晶體基本運作原理 .................................................................................... 1
1-2 多晶矽與非晶矽 ........................................................................................................ 2
1-2-1 單晶MOSFET 與多晶矽薄膜電晶體 ................................................................... 2
1-3 再結晶法製程技術 .................................................................................................... 3
1-3-1 準分子雷射結晶法(ELC, Excimer Laser Crystallization) .................................... 4
1-3-2 固相結晶法(SPC, Solid Phase Crystallization) ..................................................... 4
1-4 金屬誘發側向結晶法(MILC, MetalInduced Lateral Crystallization) ..................... 5
1-4-1 金屬誘發側向結晶法(MILC)介紹 ........................................................................ 5
1-4-2 MILC/MIC 之介面影響 ......................................................................................... 7
1-5 短通道效應(SCE, Short-Channel Effect) ............................................................... 8
1-5-1 短通道效應對結晶法之影響 ................................................................................ 9
1-6 高介電常數材料之介電層(High- κ Gate Dielectric) ............................................. 10
第二章 實驗流程與元件製作 ........................................................................ 19
2-1 NTFT 使用固相結晶法 ........................................................................................... 19
2-2 NTFT 使用金屬誘發側向結晶法 ........................................................................... 20
2-2 重要電性參數之萃取 .............................................................................................. 21
2-2-1 臨界電壓 .............................................................................................................. 21
2-2-2 次臨界擺幅 .......................................................................................................... 21
2-2-3 轉移電導(gm) ........................................................................................................ 22
2-2-4 載子遷移率 ......................................................................................................... 22
2-2-5 電流開關比(on/off Ratio) ................................................................................... 23
2-3 實驗動機與目的 ..................................................................................................... 23
第三章 結果與討論 ........................................................................................ 32
3-1 MILC&;High- κ與SPC&;SiO2 之電性比較 ............................................................ 32
3-1-1 MILC&;High-κ 與SPC&;SiO2 之輸出特性曲線(ID-VD) ..................................... 34
3-2 MILC&;High- κ與SPC&;SiO2之通道長度調變 ..................................................... 34
3-3 MILC&;High-κ 之元件比較 .................................................................................... 36
3-4 溫度效應 .................................................................................................................. 37
第四章 結論 .................................................................................................... 39
參考文獻 ................................................................................................................ 59
表目錄
表3-1 NTFT VD=0.1 時之各項電性參數 ..................................................................... 40
表3-2 PTFT VD=0.1 時之各項電性參數 ..................................................................... 40
表3-3 MILC&;High-κ 元件VD=0.1 時之各項電性參數 ............................................. 41
表3-4 SPC&;SiO2元件VD=0.1 時之各項電性參數 .................................................... 41
圖目錄
圖1-1 薄膜電晶體基本架構 ......................................................................................... 12
圖1-2 PTFT 通道累積電洞 .......................................................................................... 12
圖1-3 NTFT 通道累積電子 ......................................................................................... 12
圖1-4 非晶、多晶及單晶等三種晶體的一般形式 ..................................................... 13
圖1-5 固相結晶法(左)與準分子雷射結晶法(右)之表面圖........................................ 13
圖1-6 金屬誘發側向結晶法之長晶示意圖 ................................................................. 13
圖1-7 金屬誘發側向結晶之晶粒示意圖 ................................................................... 14
圖1-8 Ni-Si 反應活化能圖 ......................................................................................... 14
圖1-9 c-Si 在NiSi2/a-Si 介面形成的結晶成長機制 ................................................. 15
圖1-10 Si 與NiSi2晶體結構 ........................................................................................ 15
圖1-11 自我對準下的金屬誘發側向結晶 ................................................................... 15
圖1-12 overlapping MMGBs 以及通道接面能障示意圖 ........................................... 16
圖1-13 漏電流之機制 ................................................................................................. 16
圖1-14 MMGBs offset 之製程示意圖 .......................................................................... 16
圖1-15 MMGB offset 以及通道接面能障示意圖 ....................................................... 17
圖1-16 長通道下能障圖 ............................................................................................... 17
圖1-17 短通道下之能障圖 ........................................................................................... 17
圖1-18 汲極端影響能障示意圖 ................................................................................... 18
圖1-19 固相結晶法與金屬誘發側向結晶法之能障與晶粒邊界分布圖 ................... 18
圖1-20 High-κ Gate Dielectric 多晶矽薄膜電晶體示意圖 ......................................... 18
圖2-1 步驟一 ................................................................................................................. 25
圖2-2 步驟二 ................................................................................................................. 25
圖2-3 步驟三 ................................................................................................................. 25
圖2-4 步驟四 ................................................................................................................. 25
圖2-5 步驟五 ................................................................................................................. 26
圖2-6 步驟六 ................................................................................................................. 26
圖2-7 步驟七 ................................................................................................................. 26
圖2-8 步驟八 ................................................................................................................. 27
圖2-9 步驟九 ................................................................................................................. 27
圖2-10 步驟十 ............................................................................................................... 28
圖2-11 步驟十一 ........................................................................................................... 28
圖2-12 步驟十二 ........................................................................................................... 29
圖2-13 本實驗固相結晶法之結構圖 ........................................................................... 29
圖2-14 步驟四之一 ....................................................................................................... 30
圖2-15 步驟四之二 ....................................................................................................... 30
圖2-16 步驟四之三 ....................................................................................................... 30
圖2-17 步驟四之四 ....................................................................................................... 30
圖2-18 步驟七之一 ....................................................................................................... 31
圖2-19 本實驗金屬誘發側向結晶法之結構圖 ........................................................... 31
圖3-1 .............................................................................................................................. 42
圖3-2 NTFT 在VD=0.1 之轉移特性曲線(ID-VG和gm) .............................................. 42
圖3-3 NTFT 在VD=1 之轉移特性曲線(ID-VG和gm) ................................................. 43
圖3-4 PTFT 在VD=0.1 之轉移特性曲線(ID-VG和gm) ............................................... 43
圖3-5 PTFT 在VD=1之轉移特性曲線(ID-VG和gm) .................................................. 44
圖3-6 MILC&;High-κ 與SPC&;SiO2之NTFT 輸出特性曲線 .................................... 44
圖3-7 MILC&;High- κ 與SPC&;SiO2之PTFT 輸出特性曲線 .................................... 45
圖3-8 MILC&;High- κ NTFF VD=0.1 通道長度調變轉移特性曲線 ........................... 45
圖3-9 MILC&;High- κ NTFF VD=1通道長度調變轉移特性曲線 .............................. 46
圖3-10 SPC&;SiO2 NTFF VD=0.1 通道調變轉移特性曲線 ......................................... 46
圖3-11 SPC&;SiO2 NTFF VD=1通道調變轉移特性曲線 ............................................ 47
圖3-12 NTFT 通道長度調變下的臨界電壓 ................................................................ 47
圖3-13 NTFT 通道長度調變下的次臨界擺幅 ............................................................ 48
圖3-14 MILC&;High- κ PTFF VD=0.1 通道長度調變轉移特性曲線 .......................... 48
圖3-15 MILC&;High- κ PTFF VD=1通道長度調變轉移特性曲線 ............................ 49
圖3-16 SPC&;SiO2 PTFF VD=0.1 通道調變轉移特性曲線 ......................................... 49
圖3-17 SPC&;SiO2 PTFF VD=1通道調變轉移特性曲線 ............................................ 50
圖3-18 PTFT 通道長度調變下的臨界電壓 ................................................................ 50
圖3-19 PTFT 通道長度調變下的次臨界擺幅 ............................................................ 51
圖3-20 MILC&;High-κ 之各元件轉移特性曲線 ......................................................... 51
圖3-21 SPC&;SiO2之各元件轉移特性曲線 ................................................................ 52
圖3-22 MILC&;High-κ NTFF VD=0.1 變溫量測轉移特性曲線 ................................. 52
圖3-23 MILC&;High- κ NTFF VD=1變溫量測轉移特性曲線 .................................... 53
圖3-24 SPC&;SiO2 NTFF VD=0.1 變溫量測轉移特性曲線 ......................................... 53
圖3-25 SPC&;SiO2 NTFF VD=1變溫量測轉移特性曲線 ............................................ 54
圖3-26 NTFT 變溫量測下的次臨界擺幅 .................................................................... 54
圖3-27 NTFT 變溫量測下的漏電流 ............................................................................ 55
圖3-28 MILC&;High- κ PTFF VD=0.1 變溫量測轉移特性曲線 .................................. 55
圖3-29 MILC&;High- κ PTFF VD=1變溫量測轉移特性曲線 ..................................... 56
圖3-30 SPC&;SiO2 PTFF VD=0.1 變溫量測轉移特性曲線 ......................................... 56
圖3-31 SPC&;SiO2 PTFF VD=1變溫量測轉移特性曲線 ............................................ 57
圖3-32 PTFT 變溫量測下的次臨界擺幅 .................................................................... 57
圖3-33 PTFT 變溫量測下的漏電流 ............................................................................ 58
參考文獻
[1] D. A. Neamen, Semiconductor physics and devices: basic principles:
McGraw-Hill, 2011.
[2] I. W. Wu, H. Tiao-Yuan, W. B. Jackson, A. G. Lewis, and A. Chiang,
"Passivation kinetics of two types of defects in polysilicon TFT by plasma
hydrogenation," IEEE Electron Device Letters, vol. 12, pp. 181-183, 1991.
[3] W. C. Y. Ma, C. Tsung-Yu, Y. Chi-Ruei, C. Tien-Sheng, T. Lei, x, et al.,
"Channel film thickness effect of low-temperature polycrystalline-silicon
thin-film transistors," IEEE Transactions on Electron Devices, vol. 58, pp.
1268-1272, 2011.
[4] W. Man, Z. Jin, G. A. Bhat, P. C. Wong, and K. Hoi Sing, "Characterization of
the MIC/MILC interface and its effects on the performance of MILC thin-film
transistors," IEEE Transactions on Electron Devices, vol. 47, pp. 1061-1067,
2000.
[5] G. K. Giust and T. W. Sigmon, "High-performance thin-film transistors
fabricated using excimer laser processing and grain engineering," IEEE
Transactions on Electron Devices, vol. 45, pp. 925-932, 1998.
[6] C.-L. Fan and M.-C. Chen, "Correlation between electrical characteristics and
oxide/polysilicon interface morphology for excimer-laser-annealed poly-Si
TFTs," Journal of The Electrochemical Society, vol. 149, pp. G567-G573,
October 1, 2002 2002.
[7] E. Ibok and S. Garg, "A characterization of the effect of deposition temperature
on polysilicon properties: morphology, dopability, etchability, and polycide
properties," Journal of The Electrochemical Society, vol. 140, pp. 2927-2937,
October 1, 1993 1993.
[8] M. S. Haque, H. A. Naseem, and W. D. Brown, "Aluminum ‐ induced
crystallization and counter ‐ doping of phosphorous ‐ doped hydrogenated
amorphous silicon at low temperatures," Journal of Applied Physics, vol. 79, pp.
7529-7536, 1996.
[9] O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, "Polycrystalline silicon
thin films on glass by aluminum-induced crystallization," IEEE Transactions on
Electron Devices, vol. 46, pp. 2062-2068, 1999.
[10] M. Zhiguo, W. Mingxiang, and W. Man, "High performance low temperature
metal-induced unilaterally crystallized polycrystalline silicon thin film
transistors for system-on-panel applications," IEEE Transactions on Electron
60
Devices, vol. 47, pp. 404-409, 2000.
[11] S.-W. Lee and S.-K. Joo, "Low temperature poly-Si thin-film transistor
fabrication by metal-induced lateral crystallization," IEEE Electron Device
Letters, vol. 17, pp. 160-162, 1996.
[12] C. Hayzelden and J. L. Batstone, "Silicide formation and silicide‐mediated
crystallization of nickel‐implanted amorphous silicon thin films," Journal of
Applied Physics, vol. 73, pp. 8279-8289, 1993.
[13] K. R. Olasupo and M. K. Hatalis, "Leakage current mechanism in sub-micron
polysilicon thin-film transistors," IEEE Transactions on Electron Devices, vol.
43, pp. 1218-1223, 1996.
[14] K. Gi-Bum, Y. Yeo-Geon, M.-S. Kim, J. Hunjoon, S.-W. Lee, and S.-K. Joo,
"Electrical characteristics of MILC poly-Si TFTs with long Ni-offset structure,"
IEEE Transactions on Electron Devices, vol. 50, pp. 2344-2347, 2003.
[15] W. C. Y. Ma, C. Tsung-Yu, L. Je-Wei, and C. Tien-Sheng, "Oxide thinning and
structure scaling down effect of low-temperature poly-Si thin-film transistors,"
Journal of Display Technology, vol. 8, pp. 12-17, 2012.
[16] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices: Cambridge
University Press, 2009.
[17] G. A. Bhat, Z. Jin, H. S. Kwok, and W. Man, "Effects of longitudinal grain
boundaries on the performance of MILC-TFTs," IEEE Electron Device Letters,
vol. 20, pp. 97-99, 1999.
[18] Y. Ming-Jui, C.-H. Chien, L. Yi-Hsien, S. Chih-Yen, and H. Tiao-Yuan,
"Electrical properties of low-temperature-compatible p-channel
polycrystalline-silicon TFTs using high-κ gate dielectrics," IEEE Transactions
on Electron Devices, vol. 55, pp. 1027-1034, 2008.
[19] P. Tung-Ming, C. Ching-Lin, and W. Tin-Wei, "High-performance poly-silicon
TFTs using a high-κ PrTiO3 gate dielectric," IEEE Electron Device Letters, vol.
30, pp. 39-41, 2009.
[20] B. F. Hung, K. C. Chiang, C. C. Huang, A. Chin, and S. P. McAlister,
"High-performance poly-silicon TFTs incorporating LaAlO3 as the gate
dielectric," IEEE Electron Device Letters, vol. 26, pp. 384-386, 2005.
[21] P. Tung-Ming, C. Ching-Lin, and W. Tin-Wei, "High-performance poly-silicon
TFTs using HfO2 gate dielectric," IEEE Electron Device Letters, vol. 30, pp.
39-41, 2009.
[22] M. Ming-Wen, C. Tsung-Yu, W. Woei-Cherng, C. Tien-Sheng, T. Lei, x, et al.,
"Characteristics of HfO2/poly-Si interfacial layer on CMOS LTPS-TFTs with
HfO2 gate dielectric and O2 plasma surface treatment," IEEE Transactions on
Electron Devices, vol. 55, pp. 3489-3493, 2008.
[23] C. F. Cheng, T. C. Leung, M. C. Poon, and M. Chan, "Large-grain polysilicon
crystallization enhancement using pulsed RTA," IEEE Electron Device Letters,
vol. 25, pp. 553-555, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top