跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇殷寬
研究生(外文):Yin-Kuan Su
論文名稱:低成本有機光阻剝除劑於半導體封裝製程應用
論文名稱(外文):Low-cost organic photoresist Stripper in semiconductor packaging process applications
指導教授:林哲信
指導教授(外文):Che-Hsin Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:86
中文關鍵詞:四甲基氫氧化銨光阻剝除二甲基亞碸N-甲基吡咯烷酮錫球
外文關鍵詞:StrippingDMSOTMAHNMPBump
相關次數:
  • 被引用被引用:1
  • 點閱點閱:812
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出高效能光阻剝除劑配方並應用於錫球電鍍剝除光阻,我們對市售與業界配方的成分進行質譜儀與紫外光光譜儀分析,並對兩種配方使用前後的吸收度差異進行實驗。本配方的主要成份為二甲基亞碸、N-甲基吡咯烷酮、四甲基氫氧化銨及苯並三唑。在對矽晶圓電鍍銅基板進行氧化測試後,發現添加苯並三唑具有較佳抗氧化效果。除此之外,因為業界配方的部分在剝除光阻的過程中會造成金屬結構腐蝕與塊狀剝落,本配方添加苯並三唑浸泡Cu-SnAg結構12小時,發現也能有效的抑制金屬腐蝕。實驗除了光阻剝除液對矽晶圓氧化與金屬結構腐蝕的部分外,最重要的則是測試剝除液剝除光阻的效能。首先塗佈厚膜正光阻於蝕刻玻璃,使用本配方後無光阻殘留,但業界配方則有片狀殘留物。但蝕刻玻璃無法直接比較剝除光阻效能,故塗佈厚膜正光阻於矽晶圓,發現本配方清洗效能依然優於業界配方。模擬業界產線清洗,將Cu-Ni-SnAg / Cu-SnAg樣品進行剝除光阻,使用本配方仍然不會有光阻殘留,業界配方有光阻殘留外還有明顯的腐蝕問題。且對於多層金屬結構亦無產生金屬腐蝕。接著評估剝除液的清洗極限壽命,本配方清洗極限為2700 cm2/L且無光阻殘留,業界配方則為2280 cm2/L且有光阻殘留,顯示本配方清洗效能高於業界配方18%。最後用接觸角測量系統評估清洗後的矽晶圓表面的濕潤性,本配方清洗接觸角為50 o,業界配方清洗接觸角為70 o,將清洗樣品送至業界產線進行銅蝕刻測試,本配方清洗後對於銅蝕刻製程不會出現銅殘留,因此具有更佳的濕潤性。實驗結果顯示,我們提出的光阻剝除液配方在矽晶圓鍍銅基板抗氧化測試、Cu-SnAg結構12小時腐蝕測試、光阻剝除效能測試、清洗極限測試、接觸角量測以及銅蝕刻測試都有較好的效能表現。
This study presents a high-performance stripper for stripping the photoresist layer for solder balls electroplating. Mass spectrometry analysis is used for firstly analysis the composition for commercial strippers and the vendor recipes. Results indicates that the typical organic-based recipe was composed of dimethyl sulfoxide, N-methylpyrrolidone and tetramethyl ammonium hydroxide as the basic components. UV spectrometric analysis is also used to evaluate the optical absorbances for the fresh and used strippers. Results show that the developed recipe (named as BEMS-12) exhibited better photoresist stripping performance. However, the developed recipe showed stronger chemical activity such that the copper substrate and the electroplated metal bumps could be attacked by the developed stripper. In this regards, a benzotriazole-based corrosion inhibitor was used to prevent from the corrosion of the substrate. Results showed that the Cu-SnAg bumps could sustain in the recipe with corrosion inhibitor for 12 hours which is much better than the vendor recipe. In addition, the loading test results showed that the stripping performance of the developed recipe is up to 2700 cm2/L while the vender recipe is 2280 cm2/L, indicating 18% improvement. Moreover, the substrate cleaned with the developed recipe showed higher hydrophobicity compare to the vender recipe, which indicates better copper layer removal performance. The measured contact angel for the substrates cleaned with these two strippers were 70o and 50o, respectively. The developed BEMS-12 stripper shows better stripping performance, lower cost, longer shelf life, less corrosion attraction to the bumps and copper layer and better copper layer removal ability compare to the vender recipe currently in production line.
論文審定書 i
論文授權書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
符號表 xiii
簡寫表 xiv
第一章緒論 1
1.1 前言 1
1.2 封裝技術概述 2
1.3 凸塊與凸塊金屬層介紹 5
1.3.1 蒸鍍法 7
1.3.2 短釘凸塊法 8
1.3.3 電鍍法 9
1.4 晶圓清洗技術介紹 11
1.4.1 超臨界流體清洗法 12
1.4.2 低溫霧化氣體清洗法 13
1.5 光阻剝除液發展 14
1.6 抗蝕劑介紹 16
1.6.1 陽極抗蝕劑 18
1.6.2 陰極抗蝕劑 19
1.6.3 有機抗蝕劑 20
1.6.4 揮發抗蝕劑 21
1.7 研究架構 22
第二章動機目的及原理 24
2.1 研究動機與目的 24
2.2 光學微影技術 25
2.2.1 光阻簡介 27
2.3 光阻剝除原理 29
2.4 有機蝕劑保護原理 31
第三章實驗與方法 34
3.1 光阻剝除液分析 34
3.1.1 質譜儀分析 34
3.1.2 紫外光光譜儀分析 35
3.2 矽晶圓電鍍銅基板氧化測試 36
3.3 金屬結構腐蝕測試 37
3.4 光阻剝除效能與壽命測試 38
3.5 接觸角量測與銅基板腐蝕測試 42
第四章實驗結果與討論 43
4.1 光阻剝除液成份分析 43
4.2 紫外光光譜儀分析 46
4.3 矽晶圓基板電鍍鈦銅氧化測試 47
4.4 多層金屬結構腐蝕測試 48
4.5 光阻剝除效能測試 50
4.5.1 玻璃基板光阻剝除測試 50
4.5.2 矽晶圓基板光阻剝除測試 52
4.5.3 多層金屬結構光阻剝除測試 53
4.5.4 光阻剝除液壽命測試 54
4.6 矽晶圓鍍銅基板的溼潤性與銅蝕刻測試 59
第五章 結論與未來展望 60
5.1 結論 60
5.2 展望 62
參考文獻 63
自述 69
附錄 70


圖目錄
圖1-1 摩爾定律趨勢走向 1
圖1-2 引腳插入與表面黏著封裝示意圖 3
圖1-3球柵陣列封裝、插針網格陣列、雙列直插封裝、四方扁平封裝示意圖 3
圖1-4 打線接合技術、覆晶接合技術與捲帶自動接合技術結構示意圖 4
圖1-5 IBM C4 封裝結構剖面圖 5
圖1-6 凸塊金屬剖面結構圖 6
圖1-7 凸塊金屬層層蒸鍍法製程 7
圖1-8 凸塊蒸鍍法製程操作圖 8
圖1-9 短釘凸塊製程示意圖 9
圖1-10電鍍法應用於凸塊金屬層層與金屬凸塊製程圖 10
圖1-11 浸置焊料電鍍操作圖 11
圖1-12 超臨界二氧化碳清洗架構示意圖 12
圖1-13 低溫霧化氣體清洗系統架構 13
圖1-14 噴嘴去除雜質示意圖 13
圖1-15 陽極抗蝕劑保護機制示意圖 18
圖1-16 陰極抗蝕劑保護機制示意圖 19
圖1-17 有機抗蝕劑化學吸附結構圖 20
圖1-18 揮發抗蝕劑金屬表面保護機制示意圖 21
圖2-1 多層金屬結構示意圖 25
圖2-2光學微影製程流程 26
圖2-3 HMDS吸附於晶片表面提高黏著性示意圖 26
圖2-4光阻分解化學反應關係圖 27
圖2-5乾膜負光阻結構示意圖 28
圖2-6二維光阻溶解機制光阻去除示意圖 30
圖2-7 二維光阻溶解加入攪拌光阻去除示意圖 30
圖2-8三維結構光阻溶解機制示意圖 31
圖2-9苯並三唑合成反應示意圖 32
圖2-10抗蝕劑與氧化亞銅反應保護層示意圖 33
圖3-1 紫外光光譜儀實驗配置圖 35
圖3-2矽晶圓基板電鍍鈦銅抗氧化測試流程 36
圖3-3 Cu-SnAg金屬腐蝕測試 37
圖3-4 玻璃基板光阻剝除流程 38
圖3-5 矽晶圓基板光阻剝除實驗流程 39
圖3-6 接觸角量測系統 42
圖4-1 市售配方TVS-150質譜分析圖 44
圖4-2 業界提供藥水光阻剝除前質譜圖 45
圖4-3業界提供光阻剝除後質譜分析圖 45
圖4-4 業界剝除液與AZ400K配方光譜分析圖 46
圖4-5 Cu-Ni-SnAg 結構不同配方12小時腐蝕測試 49
圖4-6 Cu-SnAg結構使用業界藥水添加兩種抗蝕劑12小時腐蝕測試 49
圖4-7 BEMS配方與商用配方於玻璃基板光阻剝除測試比較 51
圖4-8不同配方對塗佈於矽晶圓基板之光阻剝除測試比較 52
圖4-9 Cu-Ni-SnAg 結構光阻剝除清洗結果 53
圖4-10 Cu- SnAg結構光阻剝除清洗結果 53
圖4-11第1至8組光阻剝除效能測試 54
圖4-12 Cu-Ni-SnAg結構第1至8組剝除極限1200倍比較圖 55
圖4-13 第10至14組光阻剝除效能測試 56
圖4-14 Cu-Ni-SnAg結構第10至14組剝除極限1200倍比較圖 57
圖4-15 Cu-SnAg結構剝除極限300倍比較圖 58
圖4-16 Cu-SnAg結構剝除極限2400倍比較圖 58
圖4-17 矽晶圓鈦銅基板接觸角測量 59
圖4-18 矽晶圓鈦銅基板蝕刻結果 59
圖5-1 剝除液對於多層金屬結構量測光罩設計圖 62

表目錄
表1-1 不同系統之光阻剝除液比較 15
表1-2 常見抗蝕劑於工業應用分類 17
表3-1 光阻剝除壽命測試流程 41
表4-1矽晶圓基板鍍銅氧化測試 47
[1]A. Allan, D. Edenfeld, W. H. Joyner Jr, A. B. Kahng, M. Rodgers, and Y. Zorian, "2001 technology roadmap for semiconductors" Computer, vol. 35, pp. 42-53, 2002.
[2]R. Schetty, "Pb-free external lead finishes for electronic components: Tin-bismuth and tin-silver" International Electronic Manufacturing Symposium and the International Microelectronics Conference, pp. 380-385, 1998.
[3]R. R. Tummala and V. K. Madisetti, "System on chip or system on package?" IEEE Design &; Test of Computers, vol. 16, pp. 48-56, 1999.
[4]R. B. Glenn, "Package/Enclosure" The Electronic Packaging Handbook Published in Cooperation with IEEE Press, pp. 1-44, 1999.
[5]T. L. Saaty, "What is the analytic hierarchy process ?" Springer-Verlag Berlin Heidelberg, vol. 48,p. 110, 1988.
[6]A. Crispin and V. Rankov, "Automated inspection of PCB components using a genetic algorithm template-matching approach" The International Journal of Advanced Manufacturing Technology, vol. 35, pp. 293-300, 2007.
[7]I. Anjoh, A. Nishimura, and S. Eguchi, "Advanced IC packaging for the future applications" IEEE Transactions on Electron Devices, vol. 45, pp. 743-752, 1998.
[8]C. Mitchell and H. M. Berg, "Thermal studies of a plastic dual-in-line package" IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 2, pp. 500-511, 1979.
[9]S.-P. T. Wang and P. Ogden, "Membrane-type pin protector for pin grid array devices" Advanced Semiconductor Manufacturing Conference and Workshop, pp. 120-127, 1991.
[10]G. E. Pitts, D. E. Boone, and D. M. Andrews, "For bonding electrical conductors," United States Patent, 1988.
[11]G. A. Rinne, "Solder bumping methods for flip chip packaging" Electronic Components and Technology Conference, pp. 240-247, 1997.
[12]K.-L. Lin and S.-Y. Chang, "The morphologies and the chemical states of the multiple zincating deposits on Al pads of Si chips" Thin Solid Films, vol. 288, pp. 36-40, 1996.
[13]E. Wai Ching Yau, J. Feng Gong, and P. Chan, "Al surface morphology effect on flip-chip solder bump shear strength" Microelectronics Reliability, vol. 44, pp. 323-331, 2004.
[14]K. DeHaven and J. Dietz, "Controlled collapse chip connection (C4)-an enabling technology" Electronic Components and Technology Conference, 1994, pp. 1-6.
[15]D. S. Patterson, P. Elenius, and J. A. Leal, "Wafer bumping technologies-A comparative analysis of solder deposition processes and assembly considerations" Advances in Electronic Packaging, vol. 1, pp. 337-351, 1997.
[16]C. Wong and J. How, "Low cost flip chip bumping technologies" Electronic Packaging Technology Conference, pp. 244-250, 1997.
[17]S.-Y. Jang and K.-W. Paik, "Pb-free bumping technology and UBM (under bump metallurgy)" Electronic Packaging Technology Conference, pp. 121-128, 2001.
[18]S.-W. Lu, R.-H. Uang, K.-C. Chen, H.-T. Hu, L.-C. Kung, and H.-C. Huang, "Fine pitch low-cost bumping for flip chip technology" Electronics Manufacturing Technology Symposium, pp. 127-130, 1999.
[19]M. K. M. Arshad, U. Hashim, and M. Isa, "Under bump metallurgy (UBM)-a technology review for flip chip packaging" International Journal of Mechanical and Materials Engineering, vol. 2, pp. 48-54, 2007.
[20]H. Christensen, "‘Electrical contact with thermo-compression Bonds" Bell Laboratories Record, pp. 127-130, 1958.

[21]G. G. Harman, "Wire bonding in microelectronics" McGraw Hill Professional, Access Engineering, vol. 6, 2010.
[22]J. Kim, M. Chiao, and L. Lin, "Ultrasonic bonding of In/Au and Al/Al for hermetic sealing of MEMS packaging" The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp. 415-418, 2002.
[23]M. Inaba, N. Iwase, S. Hirata, M. Gonda, and Y. Imai, "Direct formation of solder bump on Al pad using ultrasonic soldering" Electronics and Communications in Japan (Part II: Electronics), vol. 71, pp. 32-39, 1988.
[24]J. Ruzyllo, "Semiconductor cleaning technology: forty years in the making" Electrochemical Society Interface,vol. 19, p. 44-46, 2010.
[25]W. Kern, "The evolution of silicon wafer cleaning technology" Journal of the Electrochemical Society,vol. 137, pp. 1887-1892, 1990.
[26]C. A. Deckert and D. A. Peters, "Adhesion, wettability, and surface chemistry" Springer International Publishing, vol. 5,p. 883, 1979.
[27]J. Ruzyllo, T. Hattori, R. E. Novak, P. Mertens, and P. Besson, "Evolution of silicon cleaning technology over the last twenty years" ECS Transactions, vol. 11, pp. 3-7, 2007.
[28]T. Hattori, "Non-Aqueous Cleaning Challenges for Preventing Damage to Fragile Nano-Structures: A Review" ECS Journal of Solid State Science and Technology, vol. 3, pp. 3054-3059, 2014.
[29]P. Matz and R. Reidy, "Supercritical CO2 applications in BEOL cleaning" Solid State Phenomena, vol. 103, pp. 315-322, 2005.
[30]K. Saga and T. Hattori, "Wafer cleaning using supercritical CO2 in semiconductor and nanoelectronic device fabrication" Solid State Phenomena, vol. 134, pp. 97-103, 2008.

[31]M. Korzenski, C. Xu, and T. Baum, "Supercritical carbon dioxide: the next generation solvent for semiconductor wafer cleaning technology" Advanced Materials Technology, Inc., Materials Lifecycle Systems Division, vol. 7, 2003.
[32]G. L. Weibel and C. K. Ober, "An overview of supercritical CO2 applications in microelectronics processing" Microelectronic Engineering, vol. 65, pp. 145-152, 2003.
[33]J. M. Lauerhaas, J. F. Weygand, and G. P. Thomes, "Advanced cryogenic aerosol cleaning: application to damagefree cleaning of sensitive structured wafers" Advanced Semiconductor Manufacturing Conference and Workshop, pp. 11-16, 2005.
[34]D. Peters and C. Deckert, "Removal of photoresist film residues from wafer surfaces" Journal of The Electrochemical Society, vol. 126, pp. 883-886, 1979.
[35]Y. S. Obeng and R. Raghavan, "‘Back end’chemical cleaning in integrated circuit fabrication: a tutorial" Materials Research Society Symposium Proceedings, p. 145, 1997.
[36]D. Peters, L. Moinar, and R. Rovito, "Development of fluoride-containing solvent-based strippers" Future Fab, vol. 14, pp. 55-59, 2003.
[37]J. A. Marsella, D. L. Durham, and L. D. Molnar, "Stripping and cleaning for advanced photolithography applications" Handbook of Cleaning in Semiconductor Manufacturing, pp. 565-583, 2010.
[38]V. S. Saji, "A review on recent patents in corrosion inhibitors" Recent Patents on Corrosion Science, vol. 2, pp. 6-12, 2010.
[39]M. G. Noack, "Evalutaion of catalyed hydrazine as an oxygen scavenger" Materials Performance, vol. 21, pp. 26-30, 1982.
[40]P. R. Roberge, "Handbook of corrosion engineering" McGraw-Hill New York, vol. 1128, pp. 833-933, 2000.
[41]E. McCafferty, "Introduction to corrosion science" Springer Science &; Business Media, pp. 73-93, 2010.
[42]C. G. Dariva and A. F. Galio, "Corrosion inhibitors–principles, mechanisms and applications" InTech, vol 16, pp. 366-380, 2014.
[43]A. Wachter, T. Skei, and N. Stillman, "Dicyclohexylammonium nitrite, a volatile inhibitor for corrosion preventive packaging" Corrosion, vol. 7, pp. 284-294, 1951.
[44]E. Stroud and W. Vernon, "The prevention of corrosion in packaging. III. Vapour‐phase inhibitors" Journal of Applied Chemistry, vol. 2, pp. 178-184, 1952.
[45]H. Xiao, 羅正忠, and 張鼎張, "半導體製程技術導論" 台灣培生教育出版, 台北市, vol. 6, p. 175, 2002.
[46]J. Bauer, G. Drescher, and M. Illig, "Surface tension, adhesion and wetting of materials for photolithographic process" Journal of Vacuum Science &; Technology B, vol. 14, pp. 2485-2492, 1996.
[47]E. Kukharenka, M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead, "Electroplating moulds using dry film thick negative photoresist" Journal of Micromechanics and Microengineering, vol. 13, p. 67, 2003.
[48]H. Lorenz, L. Paratte, R. Luthier, N. F. de Rooij, and P. Renaud, "Low-cost technology for multilayer electroplated parts using laminated dry film resist" Sensors and Actuators A: Physical, vol. 53, pp. 364-368, 1996.
[49]B. Ellis, "Dry film photoresist processing technology" Circuit World, vol. 5, 2002.
[50]M. Schuh, "The elements of physical chemistry, 2nd. ed. (Atkins, P. W.)" Journal of Chemical Education, vol. 75, p. 831, 1998.
[51]B. A. M. Chou and J. L. Koenig, "A review of polymer dissolution" Progress in Polymer Science, vol. 28, pp. 1223-1270, 2003.
[52]B. S. Fang, C. G. Olson, and D. W. Lynch, "A photoemission study of benzotriazole on clean copper and cuprous oxide" Surface Science, vol. 176, pp. 476-490, 1986.
[53]Y. Hara, M. Aoki, and H. Hayashi "Resist stripper," United States Patent, US20020128164, 2004.
[54]K. Ikemoto, H. Abe, T. Maruyama, and T. Aoyama "Photoresist stripper Composition," United States Patent, US20040081922, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top