跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳心雅
研究生(外文):Sin-Ya,Chen
論文名稱:股價指數與報酬波動度的國際傳遞效果-GVAR模型實證
論文名稱(外文):The International Transmission of Stock Price Index and Return Volatility –Evidence From a GVAR Approach
指導教授:王致怡
指導教授(外文):Eliza Wang,Ph.D.
學位類別:碩士
校院名稱:國立臺北商業大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:股價指數GVAR模型ㄧ般化衝擊反應
外文關鍵詞:Stock Price IndexGlobal Vector Autoregressive (GVAR) modelGeneralized Impulse Response Function (GIRF)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用全球化向量自我迴歸模型(Global Vector Autoregressive Model, GVAR)以及ㄧ般化衝擊反應探討國際股市及全球共同變數對台灣股價指數與指數報酬波動度之連動關係,研究期間涵蓋2001年1月至2015年2月之月資料。全球共同變數包含美國公債殖利率兩年期與十年期差距、美元指數變動率、布蘭特原油油價變動率、VIX指數變動率以及泰德價差之變動率。由ㄧ般化衝擊反應發現,臺灣股市受到整體國際股市衝擊,當國外股價指數上漲1%時,臺灣股價指數上升0.70%,當國外指數報酬波動增加1%,臺灣指數波動上升0.6%,整體而言臺灣股市並不存在過度反應現象。美國與歐元區股價指數對臺灣股價指數呈正向衝擊,但中國股價指數對臺灣股價指數呈負向衝擊。此外,中國指數報酬波動度對臺灣指數報酬波動產生負向影響,顯示中國股市可能對臺灣股市有吸金的效果。就全球共同變數而言,原油價格波動對臺灣指價指數為正向衝擊,但美元指數波動在短期對臺灣股價指數則有負面影響。短期對臺灣股價指數的衝擊最大的變數是TED價差,而對臺灣指數報酬波動的衝擊最大的變數則是VIX指數。本研究將有助於了解國外經濟金融狀況對臺灣股市的衝擊,提供投資配置及主管機關監理的參考。
Using a Global Vector Autoregressive (GVAR) analysis, this study examines the impacts of international stock market and global common factors on Taiwan stock markets. The sample covers the period from January 2001 to February 2015. Global common factors used in this study includes crude oil price, TED spread, VIX, U.S. Dollar Index and the U.S.Term Structure of Interest Rates. The results show that when the foreign stock index rose 1 percent, Taiwan stock index rose 0.70 percent. This suggests that Taiwan's stock market does not exist overreaction phenomenon. The U.S. and the Eurozone stock index have positive impacts on Taiwan stock index, wheareas China stock index show a negative impact on Taiwan stock index. Hence, China's surging stock market may draw more investors and new funds from Taiwan. On the other hand, crude oil price has a positive impact on the Taiwan stock index, but rising U.S. dollar index has a negative impact on Taiwan's stock return volatility. In addition, the TED spread has the greatest impact on the Taiwan stock index, while VIX index has the greatest impact on the Taiwan’ stock return volatility. This study sheds light on international transmission dynamics of stock price and return voalitliy and provides further insight into investment allocation decision and supervisory authority’s supervision.
致謝辭 ii
論文摘要 iii
ABSTRACT iv
目 次 v
表 次 viii
圖 次 ix
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構 5
第二章 全球金融指標 6
第一節 泰德價差(TED spread) 6
第二節 波動度指數(VIX) 7
第三節 原油價格走勢 9
第四節 美國政府公債殖利率走勢 11
第五節 美元匯率走勢 13
第三章 理論背景與文獻探討 15
第一節 報酬的決定因素 15
第二節 股價與股價波動關係 18
第三節 GVAR 模型發展 20
第四章 研究設計 24
第一節 資料來源 24
第二節 變數定義 26
一、國內變數 26
二、國外變數 26
三、共同外生變數 27
第三節 研究流程 28
第四節 研究方法 29
ㄧ﹑GVAR模型 29
二﹑單根檢定 (Unit root tests) 33
三、共整合檢定 35
四﹑診斷檢定 36
五﹑國外變數對國內變數的同期效果 (Contemporaneous effects) 40
六、ㄧ般化衝擊反應 (Generalized Impulse response analysis) 41
第五章 實證結果與分析 42
第一節 敘述統計 42
第二節 單根檢定 45
第三節 落後期選擇、共整合階數及殘差序列相關檢定 48
第四節 弱外生性檢定 49
第五節 結構穩定性檢定 50
第六節 同期效果 52
第七節 橫斷面相依性分析 53
第八節 ㄧ般化衝擊反應 55
ㄧ﹑中國、美國及歐元區股價指數對臺灣股價指數的衝擊 55
二﹑中國、美國及歐元區指數報酬波動度對臺灣股價指數的衝擊 56
三﹑全球經濟變數對臺灣股價指數的衝擊 56
四﹑中國、美國及歐元區股價指數對臺灣指數報酬波動的衝擊 58
五﹑中國、美國及歐元區指數報酬波動對臺灣指數報酬波動的衝擊 59
六﹑全球經濟變數對臺灣指數報酬波動度的衝擊 59
第六章 研究結論與建議 61
第一節 研究結論 61
第二節 研究限制 62
第三節 研究貢獻 63
第四節 對後續研究者的建議 63
參考文獻 65

Ang, A., R. J. Hodrick, Y. Xing and X. Zhang. ,(2006). The Cross-Section of Volatility and Expected Returns. The Journal of Finance, 51, pp. 259-299.
Nicholas Apergis , Stephen M. Miller (2009),Do structural oil market shocks affect stock prices,Energy Economics(31),pp.569–575.
Baker, M. and Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance (61),pp.1645-1680.
Basher, S.A., and Sadorsky,P., (2006). Oil price and emerging stock market. Global Finance Journal(17), pp. 224-251.
Beckers, S., (1983). Variance of security price return based on high, low and closing prices. Journal of Business, 56, pp. 97-112.
Bernanke,B. S.,(1986).Alternative Explanations of the Money Income Correlation, Carnegie-Rochester Conference Series on Public Policy,25,pp.49-100.
Bernard, H., and S.Gerlach., (1998). Does the Term Structure Predict Recessions? The International Evidence. CEPR Discussion Paper.
Blanchard, O. and Watson,M.,(1984). Are Business Cycles All Alike? National Bureau of Economic Research.
Boudoukh,J.,M. Richardson and T. Smith.,(1993). Is the ex ante risk premium positive? A new approach to testing conditional asset pricing models. Journal of Financial Economics, 34, pp. 387- 408.
Brandt, M. and C. Jones., (2006). Volatility Forecasting with Range-Based EGARCH Models. Journal of Business and Economic Statistics(24), pp. 470-486.
Brown G. W. and Cliff M. T., (2005).Investor sentiment and asset valuation,Journal of Business( 98), 405-40
Carhart, M. M., (1997). On persistence in mutual fund performance. Journal of Finance, 52, pp. 57-82.
Castren, O., T. Fitzpatrick,M. Sydow. ,(2008). Assessing portfolio credit risk changes in a sample of EU large and complex banking group in reaction to macroeconomic shocks. mimeo.
Chen, S. H., (2010). International Economic Linkages between Taiwan and the World: A Global Vector Autoregressive Approach. Academia Economic Papers(40), pp. 343-375.
Chen,Nai-Fu., Richard Roll and Stephen A. Ross., (1986). Economic forces and the stock market. Journal of Business, 59, pp. 383-403.
Chou, R.Y., (2005). Forecasting Financial Volatilities with Extreme Values:The Conditional Autoregressive Range(CARR)Model. Journal of Money, Cred Banking(37), pp. 561-582.
Chudik, A., (2007). GVAR Approach and the Dominance of the US Economy. Mimeo, University of Cambridge.
Dees, S., Di Mauro, F. M. H. Pesaran and L. V. Smith. ,(2007). Exploring the International Linkages of the Euro Area: A Global VAR Analysis. Journal of Applied Econometrics(22), pp. 1-38.
Dees, S., S. Holly, M.H. Pesaran, and L.V. Smith (2007), Long Run Macroeconomic Relations in the Global Economy, Economics - The Open-Access, Open-Assessment E-Journal, 2007-3.
Engle, R. F. and Granger, C. W. J.(1987).Cointegration and Error Correction: Representation, Estimation and Testing, Econometrica (51), 251-76.
Estrella, Arturo and Gikas Hardouvelis., (1991). The Term Structure as a Predictor of Real Economic Activity. Journal of Finance, 46(2).
Estrella, Arturo and Frederic S. Mishkin., (1996). Predicting U.S. Recessions: Financial Variables as Leading Indicators. Federal Reserve Bank of New York Research Paper.
Fama, E. F. and French,K. R., (1992). The cross-section of expected stock returns. Journal of Finance, pp. 427-465.
Fama, E. F. and French,K. R .,(1993). Common risk factors in the returns on stocks and bonds. Journal of FinancialEconomics(33), pp. 3-56.
Fama, E. F. and French,K. R., (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, pp. 1–22.
Fang, C. R. ,(2010). The impact of oil price shocks on the three BRIC countries’s stock prices. Department of Economics National Cheng-Chi University.
Garman, M. and M. Klass. ,(1980). On the Estimation of Security Price Volatilities from Historical Data. Journal of Business(53), pp. 67-78.
Granger, C. W.J.,(1986). Developments in the Study of Cointegrated Economic Variables. Oxford Bulletin of Economics and Statistics(48), pp. 213-228.
Granger, C.W.J. and J.L. Lin. ,(1995). Causality in the Long Run. Econometric Theory, 11, pp. 530-536.
Harvey, Campbell. R. ,(1988). The real term structure and consumption growth. Journal of Financial Economics, 2(22), pp. 305-333.
Liu-Hsiang Hsu﹑Wann-Jyi Horng and Hui-Hsin Hsu . ,(2011). The Impact of the Return Rates' Volatility of the U.S. and U.K. for the Hong Kong Stock Market Returns: Using the Double Variables Threshold-GARCH Mode. Journal of Data Analysis, pp. 67 – 86.
Liu-Hsiang Hsu﹑Wann-Jyi Horng and Po-Chaio Yang.,(2007).A Static Associated Analysis of the Taiwan and the Japan Stock Market Returns' Volatility: An Application of the Bivariate GJR-GARCH Model.Ling Tung Journal,22
Jegadeesh, N. and S. Titman. ,(1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance, 48(1), pp. 65-91.
Johansen, S. ,(1992). Cointegration in Partial Systems and the Efficiency of Single Equation Analysis. Journal of Econometrics(52), pp. 231-254
Ronald A. Ratti and Joaquin L. Vespignani., (2014). Oil prices and the economy: A global perspective, CAMA Working Papers 2014-41, Centre for Applied Macroeconomic Analysis. Crawford School of Public Policy, The Australian National University, 41.
Johansen, S. ,(1992). Cointegration in Partial Systems and the Efficiency of Single Equation Analysis. Journal of Econometrics(52), pp. 389-402.
Narayan, P. K. and Narayan, S. ,(2010). Modelling the impact of oil prices on Vietnam’s stock prices. Applied Energy(87), pp. 356-361.
Neely and Christopher. J., (2001). The Practice of Central Bank Intervention: Looking Under the Hood. Review- Federal Reserve Bank of St. Louis, pp. 1-10.
Nelson, C. and C. Plosser (1982).Trends and random walks in macroeconomic time series: Some evidence and implications, Journal of Monetary Economics(10),pp.139-162
Officer, R. R., (1973). The Variablitity of the Market Factor of New York Stock Exchange. Journal of Business(46), pp. 434-453.
Ostdiek, B., (1998). The world ex ante risk premium: an empirical investigation, Journal of International Money and Finance. forthcoming.
Papapetrou, E., (2001). Oil price shocks, market, economic activity and employment in Greece. Energy Economics(23), pp. 511-532.
Park, H.J. and W.A. Fuller (1995), Alternative Estimators and Unit Root Tests for the
Autoregressive Process, Journal of Time Series Analysis, 16, pp. 415-429.
Parkinson, M. ,(1980). The Extreme Value Method for Estimating the Variance of the Rate of Return. Journal of Business, 53, pp. 61-65.
Pastor, L. and Stambaugh,R. F., (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111(3), pp. 642-685.
Pesaran, M.H., Y. Shin, and R. Smith .,(2000), Structural Analysis of Vector Error Correction Models with Exogenous I(1) Variables, Journal of Econometrics, 97, pp. 293-343.
Pesaran, M. H. , T. Schuermann and L. V. Smith., (2009). Forecasting Economic and Financial Variables with Global VARs. International Journal of Forecasting(25), pp. 642-675.
Pesaran, M.H., T Schuermann Y and Weiner S.M., (2004). Modelling regional interdependencies using a global error-correcting macor-econometric mode. Journal of Business and Economic Statistics, 1(22), p. 129~162.
Schwert, G.W., (1987). Effect of Model Specification on Tests for Unit Roots in Macoreconomic Data. Journal of Economics, pp. 73-103.
Schwert,G.W. ,(1989). Why does Stock Market Volatility change over time? The Journal of Finance(44), pp. 1115-1153.
Sharpe,W.F. ,(1964). Capital of Asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance(19), pp. 425-442.
Sims, C.A. ,(1980). Macroeconomics and Reality. Econometrica(48), pp. 1-48.
Stock, J.H. and Watson, M.W., (1996). Evidence on Structural Instability in Macroeconomic Time Series Relations. Journal of Business and Economic Statistics(14), pp. 11-30.
Hong-Qing Sun and Ying Deng Sun. ,(2009). International Comparative Study of Stock Price Fluctuations Base on EGARCH-M Mode. Finnce Teaching and Research, pp. 61-65.
Swanson, N.R. and Granger, C.W.J. ,(1997). Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions. Journal of the American Statistical Association(437), pp. 357–367.
Vansteenkiste, I., and P., Hiebert. ,(2011). Do House Price Developments Spillover across Euro Area Countries? Evidence from a Global VAR. Journal of Housing Economics(20), pp. 299-314.
Wann-Jyi Horng. ,(2008). Associated Analysis of South-Korea and Japan Stock Market Returns Volatility: An Application of Bivariate Student's t Distribution and GARCH Model. Asian Journal of Management and Humanity Sciences(3), pp. 46 – 58
Whaley, R. E. ,(2000). The Investor Fear. Journal of Portfolio Management(26), pp. 12-17.

中文部分 :
王真真. (2009). ARCH-M模型在上證股價波動中的實證研究. 現代商業, 2009(1B), 頁 50-52.
左如萱. (2011). 金融海嘯前後黃金價格波動與利率、通貨膨脹率、美元指數關聯性. 淡江大學財務金融學系碩士論文.
吳依珊. (2010). GVAR模型運用-臺灣之實證研究. 國立清華大學經濟系碩士論文.
吳俊毅﹑黃裕烈﹑徐士勛. (2012). 中國大陸崛起對臺灣的經濟衝擊分析. 國立政治大學中國大陸研究中心.
李源明. (2006). 不同的景氣條件下股價波動與產出波動之間相關性的探討. 致遠管理論叢, No.1.
俞明德﹑馮立功﹑陳韋達﹑林逸苓. (2012). 金融系統流動性風險之評估. 中央銀行金融業務檢查處-國立臺灣大學執行研究 .
施俊良. (2012). 多空市場下交易策略的選擇分析. 朝陽科技大學財務金融系學位論文.
徐清俊﹑陳彥豪. (2004). 臺灣、日本、英國及美國公債市場動態關聯性之研究. 運籌研究集刊, 頁 31-56.
高雅姿. (2012). GDP與生育之間的關係—GVAR分析. 淡江大學產業經濟學系碩士論文.
崔芮. (2013). 全球視角下中國經濟的國際觀聯-基於GVAR的實證研究. 中國廈門大學計量經濟學碩士論文.
張虹﹑李洋. (2013). 房地產市場對貨幣政策傳導效應的區域差異研究-基於GVAR模型的實證分析. 北京-金融研究(2), 頁 115-118.
張雅婷. (2012). 金磚四國與美國股市、原油市場價格間報酬連動與波動外溢效果之探討. 國立臺北商業大學財務金融所碩士論文.
黃昱程. (2007). 利率期間結構與實質經濟活動關係之研究. 中國文化大學國際企業管理研究所.
黃玉芳(2014),共移效果、多重結構改變及預測— 波動指數相關研究,中原大學商學博士學位學程
楊浩彥﹑郭迺鋒﹑林政勳. (2013). 實用財經計量方法:EViews之應用. 雙葉書廊有限公司.
劉振泰. (2009). 金磚四國產出與油價關聯性之研究. 國立高雄應用科技大學金融資訊研究所碩士論文.
盧俊宇. (2013). 恐慌指數與金磚四國指數的關聯性. 大葉大學管理學院碩士論文.
鐘展弘. (2011). VIX﹑CDS與TED價差對股票市場的影響. 世新大學財務金融系碩士論文.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top