跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳祐中
研究生(外文):Chen, Yu Chung
論文名稱:呈現低臨界有序化之嵌段共聚物於有序態之熱誘導組成變化研究
論文名稱(外文):Thermally-induced Composition Profile Change in the Ordered State of Block Copolymer Displaying LCOT Behavior
指導教授:陳信龍陳信龍引用關係
指導教授(外文):Chen, Hsin Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:57
中文關鍵詞:小角度x光散射低臨界有序化現象電子密度
外文關鍵詞:SAXSLCOTelectron dnesity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嵌段共聚物在已經得到許多重視的軟物質中建構了一個引人入勝的境界,嵌段共聚物顯著的特性在於它們的自組裝能力,可以形成大範圍的有序奈米結構以及作為模型測試軟物質的基本理論。利用小角度x光散射(SAXS),我們揭露了一個嵌段共聚物的新特性-低臨界有序化現象,PEO-b-P4VP在低臨界有序化現象中會形成層狀的結構,而層狀結構的組成隨著溫度有明顯的變化。在降溫的過程中,第一根峰值隨著溫度下降而快速的減弱,而第二根峰值則維持不變,我們藉由SAXS的結果建構了層狀結構的電子密度圖譜,在高溫的時候(200℃),層狀的電子密度圖譜可以用兩相模型來描述,交互作用參數隨著溫度下降而降低,大範圍的層狀結構依然維持良好,而嵌段共聚物的接合點則侷限在兩相的交界面。第一根峰值的下降是由於PEO相跟P4VP相的電子密度差變小,這樣的電子密度變化是因為PEO分子鏈跟P4VP分子鏈相互混和所造成的,嵌段共聚物的接合點受到空間上的限制暗示著分子鏈的混和是由分子鏈翻轉或是交換位置所造成的,接合點的空間侷限以及分子鏈的翻轉可以由低溫時電子密度圖譜中的下凹現象中得到證明,在這樣情況下的層狀結構,可以藉由三相模型來描述。
Block copolymers (bcps) constitute a fascinating class of soft materials which have received considerable attention. The remarkable features of bcps lie in their capability in self-assembling to form a variety of long-range ordered nanostructures and serving as the model system to test the fundamental theories of soft matter physics. Using small angle X-ray scattering (SAXS), here we reveal a new characteristic of the diblock copolymer exhibiting lower critical ordering transition (LCOT), where the amplitude of the periodic composition variation of the lamellar structure formed by poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-P4VP) was found to depend strongly on temperature. In the cooling process, the primary scattering peak diminished quickly with decreasing temperature, while the intensity of the second-order peak remained largely unperturbed. Construction of the electron density profiles along the lamellar normal from the SAXS curves indicated that the lamellar structure at high temperature (e.g. 200 oC) can be described by a two-phase model with diffuse boundary. As the effective interaction parameter decreased on cooling, the long-range order of the lamellar structure was still well preserved, signaling that the junction points were still highly localized at the interfacial region. The reduction of the primary peak intensity was due to the decrease of the electron density contrast between PEO-rich and P4VP-rich domains arising from the mixing of PEO and P4VP blocks. The fact that the junction points were always spatially constrained implied that the mixing between the block chains occurred via chain flipping or exchange. The constraint of the junction points and the chain flipping were evidenced by the presence of a density dip in the electron density profiles at the lower temperature; in this case, the lamellar structure is described by a three-phase model.
Table of Content
致謝 i
Abstract ii
摘要 iii
Table of Content iv
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
1.1 Phase Behavior of Block Copolymer 1
1.2 Theory of Microphase Separation in Block Copolymer 3
1.3 Lower Critical Ordering Transition of Block Copolymer 10
1.4 Motivation and Objectives of the Study 18
Chapter 2 Experimental Section 19
2.1 Materials 19
2.2 Preparation of Sample 20
2.3 Characterization 21
Chapter 3 Results and Discussion 22
3.1 Thermally-induced Variation of Periodic Composition Profile of PEO-b-P4VP Associated with the Lamellar Structure 22
3.2 The Effects of Molecular Weight and Composition Asymmetry of PEO-b-P4VP on the Temperature-Dependent Composition Profiles 41
3.3 The Chain Exchange Model for Interpreting the Temperature Dependent Composition Profile 51
Chapter 4 Conclusion 55
Chapter 5 References 56


1.Hamley, I. W., The Physics of Block Copolymers. Oxford University Press, Incorporated: 1998.
2. T. P. Lodge, Macromolecules. Chem. Phys., 2003, 204, 265–273
3. Hamley, I. W., Developments in block copolymer science and technology. J. Wiley: Chichester, West Sussex; Hoboken, NJ, 2004.
4. Bates, F. S.; Fredrickson, G. H. Physics Today 1999, 52, (2), 32-38.
5. Anne-Valérie, R.; Ludwik, L. Nature Materials 2005, 4, (1), 19-31.
6. Matsen, M. W.; Bates, F. S. Journal of Polymer Science Part B: Polymer Physics 1997, 35, (6), 945-952.
7. Meier, D. J. Journal of Polymer Science Part C: Polymer Symposia 1969, 26, (1), 81-98.
8. Leary, D. F.; Williams, M. C. Journal of Polymer Science Part B: Polymer Letters 1970, 8, (5), 335-340.
9. Leary, D. F.; Williams, M. C. Journal of Polymer Science: Polymer Physics Edition 1973, 11, (2), 345-358.
10. Leary, D. F.; Williams, M. C. Journal of Polymer Science: Polymer Physics Edition 1974, 12, (2), 265-287.
11. Helfand, E. Macromolecules 1975, 8, (4), 552-556.
12. Helfand, E., Wasserman, Z. R. 1976. Macromolecules 9:879
13. Semenov, A. N. 1985. Soviet Phys. JETP 61:733
14. Leibler, L. Macromolecules 1980, 13, (6), 1602-1617.
15. S. A. Brazovskii, Sov. Phys. JETP 1975, 41, 85
16. Fredeickson, G. H.;Helfand, E. J. Chem. Phys. 1987, 87, 697
17. Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H.; Glinka, C. J. Phys. Rev. Lett. 1988, 61, 2229.;
18. Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 92, 6255.
19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, (4), 1091-1098.
20. Ruzette, A. V. G.; Mayes, A. M. Macromolecules 2001, 34, (6), 1894-1907.
21. Ruzette, A.-V.; Banerjee, P.; Mayes, A.; Russell, T. The Journal of Chemical Physics 2001, 114, 8205.
22. Cowie, J. M. K. G.; Arrighi, V., Polymers: chemistry and physics of modern materials. CRC Press: 2008.
23. Yeung, C.; Desai, R. C.; Shi, A.-C.; Noolandi, J. Phys. Rev. Lett.1994, 72, 1834.
24. Russell, T.; Karis, T.; Gallot, Y.; Mayes, A. 1994.
25. Mortensen, K., Brown, W. & Norden, B. Phys. Rev. Lett. 1992, 68,2340-2343
26. Mortensen, K. Europhys. Lett. 1992, 19, 599-604
27. Lacobme, R. H. & Sanchez, I. C. J. Phys. Chem. 1976, 80, 2568-2580
28. M. Pollard and T. P. Russell, Macromolecules 1998, 31, 6493-6498
29. A.-V. G. Ruzette, P. Banerjee, and A. M. Mayes, Macromolecules, 1998, 31, 8509-8516
30. Hildebrand, J. H.; Scott, R. L. The Solubility of Non- Electrolytes, 3rd ed.; Reinhold: New York, 1959.
31. Du Yeol Ryu, U. J.; Kim, J. K.; Russell, T. P. Nature materials 2002, 1, (2), 114-117.
32. Ryu, D. Y.; Park, M. S.; Chae, S. H.; Jang, J.; Kim, J. K.; Russell, T. P. Macromolecules 2002, 35, (23), 8676-8680.
33. Ryu, D. Y.; Jeong, U.; Lee, D. H.; Kim, J.; Youn, H. S.; Kim, J. K. Macromolecules 2003, 36, (8), 2894-2902.
34. Yeh, C.-L.; Hou, T.; Chen, H.-L.; Yeh, L.-Y.; Chiu, F.-C.; Müller, A. J.; Hadjichristidis, N. Macromolecules 2011, 44, (3), 440-443.
35. Jacek Dudowicz and Karl F. Freed, Macromolecules 2000, 33, 5292-5299
36. R.T. Lee, Master’s Thesis, NTHU (2013).
37. Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, (3), 754-762.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top