跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭心怡
研究生(外文):Peng, Sydney
論文名稱:聚氧化乙烯-氨基酸材料之研發與應用
論文名稱(外文):Synthesis, characterization, and bio-applications of peptide hybrid materials
指導教授:朱一民朱一民引用關係
指導教授(外文):Chu, I-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:165
中文關鍵詞:溫感性組織工程氨基酸水膠
外文關鍵詞:HydrogelThermosensitivePolypeptideTissue Engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
此研究中,我們將合成出不同PEO/氨基酸類嵌段共聚物,並探討其微胞以及成膠性質與生物相容性。發現此共聚物在低濃度環境下皆可成膠,而改變其分子量可造成水膠具有不同機械強度與成膠性質。造成水膠不同物理性質之原因,推測為胺基酸鏈段形成之二級結構所致。在體外生物相容性測試方面,將軟骨細胞包埋於水膠內進行培養。由結果中發現軟骨細胞基因表現量增加,細胞明顯增生,並且在培養過程中不會產生局部酸性造成pH值下降,可作為良好之軟骨細胞培養載體。在掃描式電子顯微鏡檢測下,可看出水膠結構型態為膠原纖維狀,並且可看出軟骨細胞分泌細胞外間質附著於纖維之中,顯示水膠材料對於軟骨細胞生物相容性極佳。在glycosaminoglycans細胞染色檢測下,可看出良好軟骨細胞之基因表現。由以上實驗結果可得知,mPEG-alanine水膠在軟骨組織工程有極大應用潛力,未來將朝生物體應用更深入研究探討。

In the recent decades, polymer scientists have begun to look into the remarkable achievements of nature to extract particular knowledge for the design of improved biomaterials. This has led to an increase in hybrid polymers that use biological concepts to control the structures and properties of these hybrids. Combining synthetic materials with peptides, the basic building block of the body, into a single macromolecule offers many possibilities previously unachievable with a single material.
Peptides have the tendency to arrange into a variety of secondary structures that may be exploited in copolymer systems for their stabilizing and self-assembling character through hydrogen bonding. This dissertation sets out to study a collection of poly(ethylene oxide)-peptide materials and discusses their synthesis method, chemical and physical characteristics, and potentials as nanoscale carrier and hydrogel for use in drug and cell delivery.
This study uses amine-terminated PEO-based polymers to initiate ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) form of different amino acids to provide peptide hybrid materials. These materials exhibit the propensity for secondary structure formation in both solid and solubilized forms to provide stability and formation of distinct microarchitectures. Two different PEO-based polymers were used, including poly(ethylene oxide) – poly(propylene oxide) – poly(ethylene oxide) (PEO-PPO-PEO, Pluronic®) and methoxy poly(ethylene glycol) (mPEG).
In the first section, amine-terminated Pluronic was used to synthesize a series of Pluronic-oligo(alanine) and Pluronic-oligo(phenylalanine) copolymers. These copolymers were characterized and evaluated for their ability to carry a model hydrophobic drug, curcumin. The encapsulation efficiency of curcumin increased drastically after the addition of peptides. Furthermore, increased cytotoxicity against HeLa cells and cellular uptake were observed with alanine-contianing nanoparticle formulations. These copolymers were also prepared as thermosensitive hydrogels and exhibited decreased gelation concentration, extended in vitro and in vivo residence time, increased cell compatibility, and change in microarchitecture when compared to native Pluronic. Taken together, results suggest that this material may be suitable for various bio-applications
In the second half of the study, amine-terminated mPEG was used to synthesize a series of neutral, positively charged, and negatively charged copolymers using alanine-NCA, lysine-NCA, and aspartic acid-NCA respectively. The microarchitecture of mPEG-poly(alanine) differed significantly from those of other synthetic thermosensitive hydrogels in its strand-like appearance. Chondrocytes cultured within these hydrogels formed homogenous cell clusters with prolonged incubation. Biochemical analysis and real time polymerase chain reaction (real time RT-PCR) were used to evaluate the relationship between hydrogel characteristics and chondrogenic potential of encapsulated chondrocytes. In the final section, oligo(lysine) and oligo(aspartic acid) were added to the peptide end of mPEG-poly(alanine) to increase solubility, helical stability, and confer pH sensitivity.
In summary, these studies demonstrated that peptide hybrid materials are a feasible option for various bio-applications ranging from drug delivery to tissue engineering in both nanoparticle and hydrogel forms. These structures showed excellent stability and potential degradability in vivo as well as biomimetic character. Further in vivo evaluations are underway to examine the ability of hydrogels to support extended drug release and tissue generation. These materials clearly hold promise as an interesting class of biomaterial with a wide range of application.

Abstract of the Dissertation i
Table of Contents v
Vita xii

Chapter I: 1
General introduction and literature review
1.1 General Introduction 2
1.2 Amphiphilic block copolymers 3
1.2.1 Block copolymer assembly 4
1.2.2 Stimuli-responsive block copolymers 6
1.2.3 Bio-related applications of amphiphilic block copolymers 9
1.3 Peptides for peptide hybrid polymers 10
1.3.1 Amino acids 11
1.3.2 The amide bond and primary structure 11
1.3.3 Secondary structures 12
1.3.4 Tertiary structure 13
1.4 Peptide hybrid polymers 15
1.5 PEO-PPO-PEO (Pluronic) 17
1.5.1 Behavior in aqueous solution 17
1.5.2 Improving Pluronic 20
1.6 Cartilage tissue engineering 22
1.6.1 The extracellular matrix 22
1.6.2 Mimicking the ECM 24
1.7 Aims of the study 26
1.8 References 26

Chapter II: 35
Oligo(alanine)- modified PEO-PPO-PEO: synthesis and characterization

2.1 Introduction 36
2.2 Materials and methods 38
2.2.1 Materials 38
2.2.2 End group modification of PEO-PPO-PEO 38
2.2.3 Ninhydrin assay for verification of amination 39
2.2.4 Preparation of N-carboxyanhydride form of amino acids 39
2.2.5 Ring opening polymerization 40
2.2.6 Characterization of the copolymers 41
2.3 Results and discussion 41
2.3.1 Synthesis of the copolymer 41
2.3.2 Effect of peptide addition on physical characters 47
2.4 Conclusion 49
2.5 References 49

Chapter III: 52
Oligo(alanine)-modified PEO-PPO-PEO: encapsulation of curcumin and in vitro evaluations
3.1 Introduction 53
3.2 Materials and methods 54
3.2.1 Materials 54
3.2.2 Preparation of empty and curcumin-loaded nanocarriers 55
3.2.3 Characterization of micelles 55
3.2.4 Entrapment and drug release 56
3.2.5 Cytotoxicity 56
3.2.6 Internalization of curcumin by cells 57
3.3 Results and discussion 57
3.3.1 Characterization of nanoparticles 57
3.3.2 Preparation of free and drug-loaded carriers 58
3.3.3 Characterization of free and drug-loaded carriers 59
3.3.4 Cytotoxicity against HeLa 64
3.4 Conclusion 69
3.5 References 70

Chapter IV: 73
Oligo(alanine)-modified PEO-PPO-PEO: enhanced gelation properties and their potential as cell carrier
4.1 Introduction 74
4.2 Materials and methods 74
4.2.1 Materials 74
4.2.2 Probing secondary structures 74
4.2.3 Molecular chain movements 75
4.2.4 Gelation characteristics of hydrogels 75
4.2.5 In Vitro disintegration of hydrogels 76
4.2.6 Scanning electron microscopy 76
4.2.7 Release of a model dye 76
4.2.8 In vitro and in vivo evaluation of cell compatibility 77
4.3 Results 77
4.3.1 Presence of secondary structures 78
4.3.2 1H NMR and 13C NMR 82
4.3.3 Gelation profile 87
4.3.4 SEM and disintegration 89
4.3.5 Release of a model dye 92
4.3.6 In vitro and in vivo evaluations 93
4.4 Discussion 99
4.4.1 Secondary structures and microscale arrangements 99
4.4.2 Gelation character 104
4.4.3 Cellular compatibility 105
4.5 Conclusion 106
4.6 References 106

Chapter V: 110
mPEG-poly(peptide) hydrogels: distinct microarchitecture and promotion of chondrogenic cell clusters
5.1 Introduction 111
5.2 Materials and methods 113
5.2.1 Materials 113
5.2.2 Synthesis of mPEG-poly(alanine) 114
5.2.3 Solution and gelation properties 115
5.2.4 Incorporation of chondrocytes 115
5.2.5 Biochemical analysis 116
5.2.6 Gene expression of encapsulated chondrocytes 116
5.2.7 LIVE/DEAD and alcian blue staining 117
5.2.8 Scanning electron microscopy evaluation 117
5.2.9 Statistical analysis 117
5.3 Results and discussion 117
5.3.1. Synthesis of a series of mPEG-PA copolymers 117
5.3.2 Sol-gel profile and rheology measurements 120
5.3.3 Studies of secondary structures in copolymer solutions 122
5.3.4 Hydrogel microstructure 125
5.3.5 Biochemical analysis and real time-PCR 127
5.3.6 LIVE/DEAD and alcian blue staining 130
5.3.7 Hydrogel morphology after prolonged culture 133
5.4 Conclusion 135
5.5 References 135



Chapter VI: 141
Charged mPEG-poly(peptide) materials: Synthesis and characterization

6.1 Introduction 142
6.2 Materials and methods 143
6.2.1 Materials 143
6.2.2 Preparation of NCA form of charged amino acids 143
6.2.3 Preparation of charged mPEG-oligo(peptide) materials 144
6.2.4 Characterization of copolymers 145
6.2.5 Characterization of micelles and hydrogels 145
6.2.6 Biocompatibility 145
6.3 Results and discussion 146
6.3.1 Characterization of copolymers 146
6.3.2 Secondary structures 149
6.3.3 pH sensitivity character 150
6.3.4 Hydrogel microarchitecture 159
6.3.5 Biocompatibility 160
6.4 Conclusion 160
6.5 References 161

Afterword 164

(1) Woodward, R. B.; Schramm, C. H. Synthesis of Protein Analogs. J. Am. Chem. Soc. 1947, 69 (6), 1551.
(2) Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009, 30 (4-5), 267–277.
(3) Wiley: The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd Edition - D. Fennell Evans, Håkan Wennerström http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471242470.html (accessed May 16, 2015).
(4) Myers, D. Association Colloids: Micelles, Vesicles, and Membranes. In Surfaces, Interfaces, and Colloids; John Wiley & Sons, Inc., 2002; pp 358–396.
(5) Förster, S.; Antonietti, M. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. Adv. Mater. 1998, 10 (3), 195–217.
(6) Förster, S.; Hermsdorf, N.; Leube, W.; Schnablegger, H.; Regenbrecht, M.; Akari, S.; Lindner, P.; Böttcher, C. Fusion of Charged Block Copolymer Micelles into Toroid Networks. J. Phys. Chem. B 1999, 103 (32), 6657–6668.
(7) Aseyev, V.; Tenhu, H.; Winnik, F. M. Non-Ionic Thermoresponsive Polymers in Water. In Self Organized Nanostructures of Amphiphilic Block Copolymers II; Müller, A. H. E., Borisov, O., Eds.; Advances in Polymer Science; Springer Berlin Heidelberg, 2010; pp 29–89.
(8) Rassing, J.; Attwood, D. Ultrasonic Velocity and Light-Scattering Studies on the Polyoxyethylene—polyoxypropylene Copolymer Pluronic F127 in Aqueous Solution. International Journal of Pharmaceutics 1982, 13 (1), 47–55.
(9) Zhou, Z.; Chu, B. Light-Scattering Study on the Association Behavior of Triblock Polymers of Ethylene Oxide and Propylene Oxide in Aqueous Solution. Journal of Colloid and Interface Science 1988, 126 (1), 171–180.
(10) Barbucci, R. Hydrogels: Biological Properties and Applications; Springer, 2010.
(11) Linse, P. Modelling of the Self-Assembly of Block Copolymers in Selective Solvent. In Amphiphilic Block Copolymers; Lindman, P. A., Ed.; Elsevier Science B.V.: Amsterdam, 2000; pp 13–40.
(12) Bawa, P.; Pillay, V.; Choonara, Y. E.; Toit, L. C. du. Stimuli-Responsive Polymers and Their Applications in Drug Delivery. Biomed. Mater. 2009, 4 (2), 022001.
(13) Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B. Smart Polymers: Physical Forms and Bioengineering Applications. Progress in Polymer Science 2007, 32 (10), 1205–1237.
(14) Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Minko, S. Superhydrophobic Surfaces Generated from Water-Borne Dispersions of Hierarchically Assembled Nanoparticles Coated with a Reversibly Switchable Shell. Advanced Materials 2008, 20 (1), 200–205.
(15) E. S. Gil, S. M. H. Stimuli-Reponsive Polymers and Their Bioconjugates. Progress in Polymer Science 2004, 29, 1173–1222.
(16) Lev E Bromberg, E. S. R. Temperature-Responsive Gels and Thermogelling Polymer Matrices for Protein and Peptide Delivery. Advanced Drug Delivery Reviews 1998, No. 3, 197–221.
(17) Wang, X.; Qiu, X.; Wu, C. Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-Isopropylacrylamide) Homopolymer Chain in Water. Macromolecules 1998, 31 (9), 2972–2976.
(18) Hocine, S.; Li, M.-H. Thermoresponsive Self-Assembled Polymer Colloids in Water. Soft Matter 2013, 9 (25), 5839–5861.
(19) Chen, C. F.; Lin, C. T. Y.; Chu, I. M. Study of Novel Biodegradable Thermo-Sensitive Hydrogels of Methoxy-Poly(ethylene Glycol)-Block-Polyester Diblock Copolymers. Polymer International 2010, 59 (10), 1428–1435.
(20) Batrakova, E. V.; Kabanov, A. V. Pluronic Block Copolymers. J Control Release 2008, 130 (2), 98–106.
(21) Ma, G.; Miao, B.; Song, C. Thermosensitive PCL-PEG-PCL Hydrogels: Synthesis, Characterization, and Delivery of Proteins. J. Appl. Polym. Sci. 2010, 116 (4), 1985–1993.
(22) Zhang, X.-Z.; Xu, X.-D.; Cheng, S.-X.; Zhuo, R.-X. Strategies to Improve the Response Rate of Thermosensitive PNIPAAm Hydrogels. Soft Matter 2008, 4 (3), 385.
(23) Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2001, 53 (3), 321–339.
(24) Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic Block Copolymers for Drug Delivery. J. Pharm. Sci. 2003, 92 (7), 1343–1355.
(25) Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 2001, 47 (1), 113–131.
(26) Gaucher, G.; Dufresne, M.-H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block Copolymer Micelles: Preparation, Characterization and Application in Drug Delivery. J Control Release 2005, 109 (1-3), 169–188.
(27) Lipinski, C. A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J Pharmacol Toxicol Methods 2000, 44 (1), 235–249.
(28) Merisko-Liversidge, E. M.; Liversidge, G. G. Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds. Toxicol Pathol 2008, 36 (1), 43–48.
(29) Edwards, D. A.; Luthy, R. G.; Liu, Z. Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solutions. Environ. Sci. Technol. 1991, 25 (1), 127–133.
(30) Nagarajan; Ganesh. Comparison of Solubilization of Hydrocarbons in (PEO-PPO) Diblock versus (PEO-PPO-PEO) Triblock Copolymer Micelles. J Colloid Interface Sci 1996, 184 (2), 489–499.
(31) Nagarajan, R.; Barry, M.; Ruckenstein, E. Unusual Selectivity in Solubilization by Block Copolymer Micelles. Langmuir 1986, 2 (2), 210–215.
(32) Nagarajan, R. Solubilization of Hydrocarbons and Resulting Aggregate Shape Transitions in Aqueous Solutions of Pluronic® (PEO–PPO–PEO) Block Copolymers. Colloids and Surfaces B: Biointerfaces 1999, 16 (1–4), 55–72.
(33) Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science, 2002.
(34) Nicodemus, G. D.; Bryant, S. J. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Eng Part B Rev 2008, 14 (2), 149–165.
(35) Breslow, R. Artificial Enzymes; John Wiley & Sons, 2006.
(36) Soto, C.; Sigurdsson, E. M.; Morelli, L.; Asok Kumar, R.; Castaño, E. M.; Frangione, B. Β-Sheet Breaker Peptides Inhibit Fibrillogenesis in a Rat Brain Model of Amyloidosis: Implications for Alzheimer’s Therapy. Nat Med 1998, 4 (7), 822–826.
(37) Sawyer, E. B.; Claessen, D.; Gras, S. L.; Perrett, S. Exploiting Amyloid: How and Why Bacteria Use Cross-Β Fibrils. Biochem. Soc. Trans. 2012, 40 (4), 728–734.
(38) Fasman, G. D. The Road from Poly(α-Amino Acids) to the Prediction of Protein Conformation. Biopolymers 1987, 26 (S0), S59–S79.
(39) Börner, H. G.; Schlaad, H. Bioinspired Functional Block Copolymers. Soft Matter 2007, 3 (4), 394–408.
(40) Vandermeulen, G. W. M.; Tziatzios, C.; Klok, H.-A. Reversible Self-Organization of Poly(ethylene Glycol)-Based Hybrid Block Copolymers Mediated by a De Novo Four-Stranded Α-Helical Coiled Coil Motif. Macromolecules 2003, 36 (11), 4107–4114.
(41) Schmolka, I. R. A Review of Block Polymer Surfactants. J Amer Oil Chem Soc 1977, 54 (3), 110–116.
(42) Kabanov, A. V.; Nazarova, I. R.; Astafieva, I. V.; Batrakova, E. V.; Alakhov, V. Y.; Yaroslavov, A. A.; Kabanov, V. A. Micelle Formation and Solubilization of Fluorescent Probes in Poly(oxyethylene-B-Oxypropylene-B-Oxyethylene) Solutions. Macromolecules 1995, 28 (7), 2303–2314.
(43) Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Micellization of Poly(ethylene Oxide)-Poly(propylene Oxide)-Poly(ethylene Oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27 (9), 2414–2425.
(44) Zhou, Z.; Chu, B. Anomalous Association Behavior of an Ethylene Oxide/propylene Oxide ABA Block Copolymer in Water. Macromolecules 1987, 20 (12), 3089–3091.
(45) Kozlov, M. Y.; Melik-Nubarov, N. S.; Batrakova, E. V.; Kabanov, A. V. Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes. Macromolecules 2000, 33 (9), 3305–3313.
(46) Kabanov, A. V.; Chekhonin, V. P.; Alakhov VYu, null; Batrakova, E. V.; Lebedev, A. S.; Melik-Nubarov, N. S.; Arzhakov, S. A.; Levashov, A. V.; Morozov, G. V.; Severin, E. S. The Neuroleptic Activity of Haloperidol Increases after Its Solubilization in Surfactant Micelles. Micelles as Microcontainers for Drug Targeting. FEBS Lett. 1989, 258 (2), 343–345.
(47) Saski, W.; Shah, S. G. AVAILABILITY OF DRUGS IN THE PRESENCE OF SURFACE-ACTIVE AGENTS. II. EFFECTS OF SOME OXYETHYLENE OXYPROPYLENE POLYMERS ON THE BIOLOGICAL ACTIVITY OF HEXETIDINE. J Pharm Sci 1965, 54, 277–280.
(48) Croy, S. R.; Kwon, G. S. The Effects of Pluronic Block Copolymers on the Aggregation State of Nystatin. J Control Release 2004, 95 (2), 161–171.
(49) Croy, S. R.; Kwon, G. S. Polysorbate 80 and Cremophor EL Micelles Deaggregate and Solubilize Nystatin at the Core-Corona Interface. J Pharm Sci 2005, 94 (11), 2345–2354.
(50) Valle, J. W.; Lawrance, J.; Brewer, J.; Clayton, A.; Corrie, P.; Alakhov, V.; Ranson, M. A Phase II, Window Study of SP1049C as First-Line Therapy in Inoperable Metastatic Adenocarcinoma of the Oesophagus. ASCO Meeting Abstracts 2004, 22 (14_suppl), 4195.
(51) Zhang, W.; Shi, Y.; Chen, Y.; Ye, J.; Sha, X.; Fang, X. Multifunctional Pluronic P123/F127 Mixed Polymeric Micelles Loaded with Paclitaxel for the Treatment of Multidrug Resistant Tumors. Biomaterials 2011, 32 (11), 2894–2906.
(52) Alakhov VYu, null; Moskaleva EYu, null; Batrakova, E. V.; Kabanov, A. V. Hypersensitization of Multidrug Resistant Human Ovarian Carcinoma Cells by Pluronic P85 Block Copolymer. Bioconjug. Chem. 1996, 7 (2), 209–216.
(53) Alakhov, V.; Klinski, E.; Li, S.; Pietrzynski, G.; Venne, A.; Batrakova, E.; Bronitch, T.; Kabanov, A. Block Copolymer-Based Formulation of Doxorubicin. From Cell Screen to Clinical Trials. Colloids and Surfaces B: Biointerfaces 1999, 16 (1–4), 113–134.
(54) Sharma, P. K.; Reilly, M. J.; Jones, D. N.; Robinson, P. M.; Bhatia, S. R. The Effect of Pharmaceuticals on the Nanoscale Structure of PEO-PPO-PEO Micelles. Colloids Surf B Biointerfaces 2008, 61 (1), 53–60.
(55) Shin, S. C.; Cho, C. W.; Oh, I. J. Effects of Non-Ionic Surfactants as Permeation Enhancers towards Piroxicam from the Poloxamer Gel through Rat Skins. Int J Pharm 2001, 222 (2), 199–203.
(56) Pillai, O.; Panchagnula, R. Transdermal Delivery of Insulin from Poloxamer Gel: Ex Vivo and in Vivo Skin Permeation Studies in Rat Using Iontophoresis and Chemical Enhancers. J Control Release 2003, 89 (1), 127–140.
(57) Liaw, J.; Lin, Y. Evaluation of Poly(ethylene Oxide)-Poly(propylene Oxide)-Poly(ethylene Oxide) (PEO-PPO-PEO) Gels as a Release Vehicle for Percutaneous Fentanyl. J Control Release 2000, 68 (2), 273–282.
(58) Escobar-Chávez, J. J.; López-Cervantes, M.; Naïk, A.; Kalia, Y. N.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of Thermo-Reversible Pluronic F-127 Gels in Pharmaceutical Formulations. J Pharm Pharm Sci 2006, 9 (3), 339–358.
(59) Paavola, A.; Kilpeläinen, I.; Yliruusi, J.; Rosenberg, P. Controlled Release Injectable Liposomal Gel of Ibuprofen for Epidural Analgesia. Int J Pharm 2000, 199 (1), 85–93.
(60) Amiji, M. M.; Lai, P.-K.; Shenoy, D. B.; Rao, M. Intratumoral Administration of Paclitaxel in an in Situ Gelling Poloxamer 407 Formulation. Pharm Dev Technol 2002, 7 (2), 195–202.
(61) Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic Block Copolymers for Overcoming Drug Resistance in Cancer. Adv. Drug Deliv. Rev. 2002, 54 (5), 759–779.
(62) Chen, P.-C.; Kohane, D. S.; Park, Y. J.; Bartlett, R. H.; Langer, R.; Yang, V. C. Injectable Microparticle–gel System for Prolonged and Localized Lidocaine Release. II. in Vivo Anesthetic Effects. J. Biomed. Mater. Res. 2004, 70A (3), 459–466.
(63) Paavola, A.; Yliruusi, J.; Kajimoto, Y.; Kalso, E.; Wahlström, T.; Rosenberg, P. Controlled Release of Lidocaine from Injectable Gels and Efficacy in Rat Sciatic Nerve Block. Pharm Res 1995, 12 (12), 1997–2002.
(64) Hatefi, A.; Amsden, B. Biodegradable Injectable in Situ Forming Drug Delivery Systems. J Control Release 2002, 80 (1-3), 9–28.
(65) Hom, D. B.; Medhi, K.; Assefa, G.; Juhn, S. K.; Johnston, T. P. Vascular Effects of Sustained-Release Fibroblast Growth Factors. Ann. Otol. Rhinol. Laryngol. 1996, 105 (2), 109–116.
(66) Khattak, S. F.; Bhatia, S. R.; Roberts, S. C. Pluronic F127 as a Cell Encapsulation Material: Utilization of Membrane-Stabilizing Agents. Tissue Engineering 2005, 11 (5-6), 974–983.
(67) Melik-Nubarov, N. S.; Pomaz, O. O.; Dorodnych TYu, null; Badun, G. A.; Ksenofontov, A. L.; Schemchukova, O. B.; Arzhakov, S. A. Interaction of Tumor and Normal Blood Cells with Ethylene Oxide and Propylene Oxide Block Copolymers. FEBS Lett. 1999, 446 (1), 194–198.
(68) Park, S. Y.; Lee, Y.; Bae, K. H.; Ahn, C.-H.; Park, T. G. Temperature/pH-Sensitive Hydrogels Prepared from Pluronic Copolymers End-Capped with Carboxylic Acid Groups via an Oligolactide Spacer. Macromolecular Rapid Communications 2007, 28 (10), 1172–1176.
(69) Patil, N.; Kelsey, J.; White, J. L. Self-Assembled Polymer Nanocomposites and Their Networks. J. Appl. Polym. Sci. 2014, 131 (22), n/a – n/a.
(70) Gao, Y.; Li, L. B.; Zhai, G. Preparation and Characterization of Pluronic/TPGS Mixed Micelles for Solubilization of Camptothecin. Colloids Surf B Biointerfaces 2008, 64 (2), 194–199.
(71) Li, L.; Tan, Y. B. Preparation and Properties of Mixed Micelles Made of Pluronic Polymer and PEG-PE. J Colloid Interface Sci 2008, 317 (1), 326–331.
(72) Rapoport, N. Stabilization and Activation of Pluronic Micelles for Tumor-Targeted Drug Delivery. Colloids and Surfaces B: Biointerfaces 1999, 16 (1–4), 93–111.
(73) Weinand, C.; Pomerantseva, I.; Neville, C. M.; Gupta, R.; Weinberg, E.; Madisch, I.; Shapiro, F.; Abukawa, H.; Troulis, M. J.; Vacanti, J. P. Hydrogel-Beta-TCP Scaffolds and Stem Cells for Tissue Engineering Bone. Bone 2006, 38 (4), 555–563.
(74) Pec, E. A.; Wout, Z. G.; Johnston, T. P. Biological Activity of Urease Formulated in Poloxamer 407 after Intraperitoneal Injection in the Rat. J Pharm Sci 1992, 81 (7), 626–630.
(75) Sosnik, A.; Cohn, D. Ethoxysilane-Capped PEO-PPO-PEO Triblocks: A New Family of Reverse Thermo-Responsive Polymers. Biomaterials 2004, 25 (14), 2851–2858.
(76) Gupta, V. K.; Assmus, M. W.; Beckert, T. E.; Price, J. C. A Novel pH- and Time-Based Multi-Unit Potential Colonic Drug Delivery System. II. Optimization of Multiple Response Variables. International Journal of Pharmaceutics 2001, 213 (1–2), 93–102.
(77) Determan, M. D.; Cox, J. P.; Mallapragada, S. K. Drug Release from pH-Responsive Thermogelling Pentablock Copolymers. J. Biomed. Mater. Res. 2007, 81A (2), 326–333.
(78) Cohn, D.; Lando, G.; Sosnik, A.; Garty, S.; Levi, A. PEO-PPO-PEO-Based Poly(ether Ester Urethane)s as Degradable Reverse Thermo-Responsive Multiblock Copolymers. Biomaterials 2006, 27 (9), 1718–1727.
(79) Sosnik, A.; Cohn, D. Reverse Thermo-Responsive Poly(ethylene Oxide) and Poly(propylene Oxide) Multiblock Copolymers. Biomaterials 2005, 26 (4), 349–357.
(80) Reversible Gelation Compositions and Methods of Use.
(81) Li, J. Self-Assembled Supramolecular Hydrogels Based on Polymer–cyclodextrin Inclusion Complexes for Drug Delivery. NPG Asia Mater 2010, 2 (3), 112–118.
(82) Muiznieks, L. D.; Keeley, F. W. Molecular Assembly and Mechanical Properties of the Extracellular Matrix: A Fibrous Protein Perspective. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2013, 1832 (7), 866–875.
(83) Hersel, U.; Dahmen, C.; Kessler, H. RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and beyond. Biomaterials 2003, 24 (24), 4385–4415.
(84) Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W. The Effect of the Alignment of Electrospun Fibrous Scaffolds on Schwann Cell Maturation. Biomaterials 2008, 29 (6), 653–661.
(85) Pearson Education, Inc. Publishing as Benjamin Cummings.
(86) Neergaard-Petersen, S.; Ajjan, R.; Hvas, A.-M.; Hess, K.; Larsen, S. B.; Kristensen, S. D.; Grove, E. L. Fibrin Clot Structure and Platelet Aggregation in Patients with Aspirin Treatment Failure. PLoS ONE 2013, 8 (8), e71150.
(87) Ye, X.; Wang, H.; Zhou, J.; Li, H.; Liu, J.; Wang, Z.; Chen, A.; Zhao, Q. The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells. PLoS ONE 2013, 8 (1), e54622.
(88) Holzwarth, J. M.; Ma, P. X. 3D Nanofibrous Scaffolds for Tissue Engineering. J. Mater. Chem. 2011, 21 (28), 10243–10251.
(89) Pandya, M. J.; Spooner, G. M.; Sunde, M.; Thorpe, J. R.; Rodger, A.; Woolfson, D. N. Sticky-End Assembly of a Designed Peptide Fiber Provides Insight into Protein Fibrillogenesis. Biochemistry 2000, 39 (30), 8728–8734.
(90) Potekhin, S. A.; Melnik, T. N.; Popov, V.; Lanina, N. F.; Vazina, A. A.; Rigler, P.; Verdini, A. S.; Corradin, G.; Kajava, A. V. De Novo Design of Fibrils Made of Short Α-Helical Coiled Coil Peptides. Chemistry & Biology 2001, 8 (11), 1025–1032.
(91) Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic Reassembly of Peptide RADA16 Nanofiber Scaffold. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (24), 8414–8419.
(92) Liu, X.; Wang, X.; Wang, X.; Ren, H.; He, J.; Qiao, L.; Cui, F.-Z. Functionalized Self-Assembling Peptide Nanofiber Hydrogels Mimic Stem Cell Niche to Control Human Adipose Stem Cell Behavior in Vitro. Acta Biomaterialia 2013, 9 (6), 6798–6805.
(93) Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly Recovering Hydrogel Scaffolds from Self-Assembling Diblock Copolypeptide Amphiphiles. Nature 2002, 417 (6887), 424–428.
(94) Stoppoloni, D.; Politi, L.; Dalla Vedova, P.; Messano, M.; Koverech, A.; Scandurra, R.; Scotto d’Abusco, A. L-Carnitine Enhances Extracellular Matrix Synthesis in Human Primary Chondrocytes. Rheumatol. Int. 2013, 33 (9), 2399–2403.
(95) Bhattacharya, M.; Malinen, M. M.; Lauren, P.; Lou, Y.-R.; Kuisma, S. W.; Kanninen, L.; Lille, M.; Corlu, A.; GuGuen-Guillouzo, C.; Ikkala, O.; et al. Nanofibrillar Cellulose Hydrogel Promotes Three-Dimensional Liver Cell Culture. Journal of Controlled Release 2012, 164 (3), 291–298.
(96) Wang, X.; Ding, B.; Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Materials Today 2013, 16 (6), 229–241.
(97) Chou, P. Y.; Fasman, G. D. Prediction of Protein Conformation. Biochemistry 1974, 13 (2), 222–245.
(98) Kōmoto, T.; Kawai, T.; Bezruk, L. I.; Graboshnikova, V. I.; Ebert, G. Morphology of poly(L-Alanine) Fiber. Makromol. Chem. 1979, 180 (3), 825–828.
(99) Bratzel, G.; Buehler, M. J. Sequence-Structure Correlations in Silk: Poly-Ala Repeat of N. Clavipes MaSp1 Is Naturally Optimized at a Critical Length Scale. J Mech Behav Biomed Mater 2012, 7, 30–40.
(100) Hayashi, C. Y.; Shipley, N. H.; Lewis, R. V. Hypotheses That Correlate the Sequence, Structure, and Mechanical Properties of Spider Silk Proteins. Int. J. Biol. Macromol. 1999, 24 (2-3), 271–275.
(101) Forood, B.; Pérez-Payá, E.; Houghten, R. A.; Blondelle, S. E. Formation of an Extremely Stable Polyalanine Beta-Sheet Macromolecule. Biochem. Biophys. Res. Commun. 1995, 211 (1), 7–13.
(102) Claessens, C. G.; Stoddart, J. F. Π–π INTERACTIONS IN SELF-ASSEMBLY. J. Phys. Org. Chem. 1997, 10 (5), 254–272.
(103) Gillard, R. E.; Raymo, F. M.; Stoddart, J. F. Controlling Self-Assembly. Chem. Eur. J. 1997, 3 (12), 1933–1940.
(104) Gazit, E. A Possible Role for Pi-Stacking in the Self-Assembly of Amyloid Fibrils. FASEB J. 2002, 16 (1), 77–83.
(105) Azriel, R.; Gazit, E. Analysis of the Minimal Amyloid-Forming Fragment of the Islet Amyloid Polypeptide. An Experimental Support for the Key Role of the Phenylalanine Residue in Amyloid Formation. J. Biol. Chem. 2001, 276 (36), 34156–34161.
(106) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Nanotube Formation from Renewable Resources via Coiled Nanofibers. Adv. Mater. 2001, 13 (10), 715–718.
(107) John, G.; Jung, J. H.; Masuda, M.; Shimizu, T. Unsaturation Effect on Gelation Behavior of Aryl Glycolipids. Langmuir 2004, 20 (6), 2060–2065.
(108) Liu, R.; He, B.; Li, D.; Lai, Y.; Chang, J.; Tang, J. Z.; Gu, Z. Effects of pH-Sensitive Chain Length on Release of Doxorubicin from mPEG-B-PH-B-PLLA Nanoparticles. Int J Nanomedicine 2012, 7, 4433–4446.
(109) Habraken, G. J. M.; Peeters, M.; Dietz, C. H. J. T.; Koning, C. E.; Heise, A. How Controlled and Versatile Is N-Carboxy Anhydride (NCA) Polymerization at 0 °C? Effect of Temperature on Homo-, Block- and Graft (co)polymerization. Polym. Chem. 2010, 1 (4), 514–524.
(110) Farthing, A. C. 627. Synthetic Polypeptides. Part I. Synthesis of Oxazolid-2 : 5-Diones and a New Reaction of Glycine. J. Chem. Soc. 1950, No. 0, 3213–3217.
(111) Dmitrovic, V.; Habraken, G. J. M.; Hendrix, M. M. R. M.; Habraken, W. J. E. M.; Heise, A.; de With, G.; Sommerdijk, N. A. J. M. Random Poly(Amino Acid)s Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3. Polymers 2012, 4 (2), 1195–1210.
(112) Mahou, R.; Wandrey, C. Versatile Route to Synthesize Heterobifunctional Poly(ethylene Glycol) of Variable Functionality for Subsequent Pegylation. Polymers 2012, 4 (1), 561–589.
(113) Choi, Y. Y.; Jeong, Y.; Joo, M. K.; Jeong, B. Reverse Thermal Organogelation of Poly(ethylene Glycol)-Polypeptide Diblock Copolymers in Chloroform. Macromol Biosci 2009, 9 (9), 869–874.
(114) Kajjari, P. B.; Manjeshwar, L. S.; Aminabhavi, T. M. Novel Blend Microspheres of poly(3-Hydroxybutyrate) and Pluronic F68/127 for Controlled Release of 6-Mercaptopurine. Journal of Applied Polymer Science 2013, n/a – n/a.
(115) Xie, W.; Zhu, W.; Shen, Z. Synthesis, Isothermal Crystallization and Micellization of mPEG–PCL Diblock Copolymers Catalyzed by Yttrium Complex. Polymer 2007, 48 (23), 6791–6798.
(116) Jia, W.; Gu, Y.; Gou, M.; Dai, M.; Li, X.; Kan, B.; Yang, J.; Song, Q.; Wei, Y.; Qian, Z. Preparation of Biodegradable Polycaprolactone/poly (ethylene Glycol)/polycaprolactone (PCEC) Nanoparticles. Drug Deliv 2008, 15 (7), 409–416.
(117) Huang, M.-H.; Li, S.; Hutmacher, D. W.; Schantz, J.-T.; Vacanti, C. A.; Braud, C.; Vert, M. Degradation and Cell Culture Studies on Block Copolymers Prepared by Ring Opening Polymerization of Epsilon-Caprolactone in the Presence of Poly(ethylene Glycol). J Biomed Mater Res A 2004, 69 (3), 417–427.
(118) Shan, Y.; Qin, Y.; Chuan, Y.; Li, H.; Yuan, M. The Synthesis and Characterization of Hydroxyapatite-Β-Alanine Modified by Grafting Polymerization of Γ-Benzyl-L-Glutamate-N-Carboxyanhydride. Molecules 2013, 18 (11), 13979–13991.
(119) Zhang, Y.; Zhao, L.; Chen, M.; Lang, M. Synthesis and Properties of Pluronic-Based Pentablock Copolymers with Pendant Amino Groups. Colloid Polym Sci 2013, 291 (7), 1563–1571.
(120) Torchilin, V. P. Drug Targeting. Eur J Pharm Sci 2000, 11 Suppl 2, S81–S91.
(121) Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: A Boon to Drug Delivery, Therapeutics, Diagnostics and Imaging. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (2), 147–166.
(122) De Jong, W. H.; Borm, P. J. Drug Delivery and Nanoparticles: Applications and Hazards. Int J Nanomedicine 2008, 3 (2), 133–149.
(123) Ruby, A. J.; Kuttan, G.; Babu, K. D.; Rajasekharan, K. N.; Kuttan, R. Anti-Tumour and Antioxidant Activity of Natural Curcuminoids. Cancer Lett. 1995, 94 (1), 79–83.
(124) Sharma, O. P. Antioxidant Activity of Curcumin and Related Compounds. Biochem. Pharmacol. 1976, 25 (15), 1811–1812.
(125) Srimal, R. C.; Dhawan, B. N. Pharmacology of Diferuloyl Methane (curcumin), a Non-Steroidal Anti-Inflammatory Agent*. Journal of Pharmacy and Pharmacology 1973, 25 (6), 447–452.
(126) Mohanty, C.; Das, M.; Sahoo, S. K. Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin. Expert Opinion on Drug Delivery 2012, 9 (11), 1347–1364.
(127) Gou, M.; Men, K.; Shi, H.; Xiang, M.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; et al. Curcumin-Loaded Biodegradable Polymeric Micelles for Colon Cancer Therapy in Vitro and in Vivo. Nanoscale 2011, 3 (4), 1558–1567.
(128) Mohanty, C.; Acharya, S.; Mohanty, A. K.; Dilnawaz, F.; Sahoo, S. K. Curcumin-Encapsulated MePEG/PCL Diblock Copolymeric Micelles: A Novel Controlled Delivery Vehicle for Cancer Therapy. Nanomedicine 2010, 5 (3), 433–449.
(129) Huang, J.; Wang, K.; Liu; Wang; Wu; Chen; Ni; Zhang; Junshu; Hu. Novel Micelle Formulation of Curcumin for Enhancing Antitumor Activity and Inhibiting Colorectal Cancer Stem Cells. International Journal of Nanomedicine 2012, 4487.
(130) Zhang, X.; Jackson, J. K.; Burt, H. M. Determination of Surfactant Critical Micelle Concentration by a Novel Fluorescence Depolarization Technique. J. Biochem. Biophys. Methods 1996, 31 (3-4), 145–150.
(131) Tønnesen, H. H.; Másson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. International Journal of Pharmaceutics 2002, 244 (1–2), 127–135.
(132) Rathore, O.; Sogah, D. Y. Self-Assembly of Β-Sheets into Nanostructures by Poly(alanine) Segments Incorporated in Multiblock Copolymers Inspired by Spider Silk. J. Am. Chem. Soc. 2001, 123 (22), 5231–5239.
(133) Song, M. J.; Lee, D. S.; Ahn, J. H.; Kim, D. J.; Kim, S. C. Thermosensitive Sol–gel Transition Behaviors of Poly(ethylene Oxide)/aliphatic Polyester/poly(ethylene Oxide) Aqueous Solutions. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (3), 772–784.
(134) Veeren, A.; Bhaw-Luximon, A.; Jhurry, D. Polyvinylpyrrolidone–polycaprolactone Block Copolymer Micelles as Nanocarriers of Anti-TB Drugs. European Polymer Journal 2013, 49 (10), 3034–3045.
(135) Jeetah, R.; Bhaw-Luximon, A.; Jhurry, D. New Amphiphilic PEG-B-P(ester–ether) Micelles as Potential Drug Nanocarriers. J Nanopart Res 2012, 14 (10), 1–13.
(136) Sezgin, Z.; Yüksel, N.; Baykara, T. Preparation and Characterization of Polymeric Micelles for Solubilization of Poorly Soluble Anticancer Drugs. Eur J Pharm Biopharm 2006, 64 (3), 261–268.
(137) Nardo, L.; Paderno, R.; Andreoni, A.; Má Sson, M.; r; Haukvik, T.; TØ Nnesen, H. H. Role of H-Bond Formation in the Photoreactivity of Curcumin. Journal of Spectroscopy 2008, 22 (2-3), 187–198.
(138) Ghosh, R.; Mondal, J. A.; Palit, D. K. Ultrafast Dynamics of the Excited States of Curcumin in Solution. J Phys Chem B 2010, 114 (37), 12129–12143.
(139) Fu, Y.; Kao, W. J. Drug Release Kinetics and Transport Mechanisms of Non-Degradable and Degradable Polymeric Delivery Systems. Expert Opin Drug Deliv 2010, 7 (4), 429–444.
(140) Martinet, W.; Schrijvers, D. M.; Kockx, M. M. Nucleofection as an Efficient Nonviral Transfection Method for Human Monocytic Cells. Biotechnol. Lett. 2003, 25 (13), 1025–1029.
(141) Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. “Stealth” Corona-Core Nanoparticles Surface Modified by Polyethylene Glycol (PEG): Influences of the Corona (PEG Chain Length and Surface Density) and of the Core Composition on Phagocytic Uptake and Plasma Protein Adsorption. Colloids and Surfaces B: Biointerfaces 2000, 18 (3–4), 301–313.
(142) Peng, S.; Hung, W.-L.; Peng, Y.-S.; Chu, I.-M. Oligoalanine-Modified Pluronic-F127 Nanocarriers for the Delivery of Curcumin with Enhanced Entrapment Efficiency. Journal of Biomaterials Science, Polymer Edition 2014, 25 (12), 1225–1239.
(143) Böhm, G.; Muhr, R.; Jaenicke, R. Quantitative Analysis of Protein Far UV Circular Dichroism Spectra by Neural Networks. Protein Eng. 1992, 5 (3), 191–195.
(144) Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39 (8), 549–559.
(145) Holzwarth, G.; Doty, P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J. Am. Chem. Soc. 1965, 87, 218–228.
(146) Chiang‐Ying M. Tung, P. J. D. Relationship between Viscoelastic Properties and Gelation in Thermosetting Systems. Journal of Applied Polymer Science 2003, 27 (2), 569–574.
(147) Fang, J.; Mehlich, A.; Koga, N.; Huang, J.; Koga, R.; Gao, X.; Hu, C.; Jin, C.; Rief, M.; Kast, J.; et al. Forced Protein Unfolding Leads to Highly Elastic and Tough Protein Hydrogels. Nat Commun 2013, 4.
(148) Takahashi, T.; Ogasawara, T.; Asawa, Y.; Mori, Y.; Uchinuma, E.; Takato, T.; Hoshi, K. Three-Dimensional Microenvironments Retain Chondrocyte Phenotypes during Proliferation Culture. Tissue Eng. 2007, 13 (7), 1583–1592.
(149) Ziats, N. P.; Miller, K. M.; Anderson, J. M. In Vitro and in Vivo Interactions of Cells with Biomaterials. Biomaterials 1988, 9 (1), 5–13.
(150) Cohn, D.; Sosnik, A.; Garty, S. Smart Hydrogels for in Situ Generated Implants. Biomacromolecules 2005, 6 (3), 1168–1175.
(151) Sosnik, A.; Cohn, D.; San Román, J.; Abraham, G. A. Crosslinkable PEO-PPO-PEO-Based Reverse Thermo-Responsive Gels as Potentially Injectable Materials. J Biomater Sci Polym Ed 2003, 14 (3), 227–239.
(152) Cellesi, F.; Tirelli, N.; Hubbell, J. A. Towards a Fully-Synthetic Substitute of Alginate: Development of a New Process Using Thermal Gelation and Chemical Cross-Linking. Biomaterials 2004, 25 (21), 5115–5124.
(153) Cellesi, F.; Tirelli, N. A New Process for Cell Microencapsulation and Other Biomaterial Applications: Thermal Gelation and Chemical Cross-Linking in “Tandem.” J Mater Sci Mater Med 2005, 16 (6), 559–565.
(154) Lee, Y.; Chung, H. J.; Yeo, S.; Ahn, C.-H.; Lee, H.; Messersmith, P. B.; Park, T. G. Thermo-Sensitive, Injectable, and Tissue Adhesive Sol–gel Transition Hyaluronic Acid/pluronic Composite Hydrogels Prepared from Bio-Inspired Catechol-Thiol Reaction. Soft Matter 2010, 6 (5), 977–983.
(155) Macdonald, J. R.; Johnson, W. C. Environmental Features Are Important in Determining Protein Secondary Structure. Protein Sci 2001, 10 (6), 1172–1177.
(156) Zhong, L.; Johnson, W. C. Environment Affects Amino Acid Preference for Secondary Structure. Proc Natl Acad Sci U S A 1992, 89 (10), 4462–4465.
(157) Nguyen, H. D.; Marchut, A. J.; Hall, C. K. Solvent Effects on the Conformational Transition of a Model Polyalanine Peptide. Protein Sci 2004, 13 (11), 2909–2924.
(158) Luthra, S.; Kalonia, D. S.; Pikal, M. J. Effect of Hydration on the Secondary Structure of Lyophilized Proteins as Measured by Fourier Transform Infrared (FTIR) Spectroscopy. J Pharm Sci 2007, 96 (11), 2910–2921.
(159) Rupley, J. A.; Careri, G. Protein Hydration and Function. Adv. Protein Chem. 1991, 41, 37–172.
(160) Yoder, G.; Pancoska, P.; Keiderling, T. A. Characterization of Alanine-Rich Peptides, Ac-(AAKAA)n-GY-NH2 (n = 1-4), Using Vibrational Circular Dichroism and Fourier Transform Infrared. Conformational Determination and Thermal Unfolding. Biochemistry 1997, 36 (49), 15123–15133.
(161) Ding, F.; Borreguero, J. M.; Buldyrey, S. V.; Stanley, H. E.; Dokholyan, N. V. Mechanism for the Alpha-Helix to Beta-Hairpin Transition. Proteins 2003, 53 (2), 220–228.
(162) Blondelle, S. E.; Forood, B.; Houghten, R. A.; Pérez-Payá, E. Polyalanine-Based Peptides as Models for Self-Associated Beta-Pleated-Sheet Complexes. Biochemistry 1997, 36 (27), 8393–8400.
(163) Lam, Y.-M.; Grigorieff, N.; Goldbeck-Wood, G. Direct Visualisation of Micelles of Pluronic Block Copolymers in Aqueous Solution by Cryo-TEM. Phys. Chem. Chem. Phys. 1999, 1 (14), 3331–3334.
(164) Balmbra, R. R.; Clunie, J. S.; Corkill, J. M.; Goodman, J. F. Effect of Temperature on the Micelle Size of a Homogeneous Non-Ionic Detergent. Trans. Faraday Soc. 1962, 58 (0), 1661–1667.
(165) Ho, S. P.; DeGrado, W. F. Design of a 4-Helix Bundle Protein: Synthesis of Peptides Which Self-Associate into a Helical Protein. J. Am. Chem. Soc. 1987, 109 (22), 6751–6758.
(166) Jain, A.; Ashbaugh, H. S. Helix Stabilization of Poly(ethylene Glycol)-Peptide Conjugates. Biomacromolecules 2011, 12 (7), 2729–2734.
(167) Hamed, E.; Xu, T.; Keten, S. Poly(ethylene Glycol) Conjugation Stabilizes the Secondary Structure of Α-Helices by Reducing Peptide Solvent Accessible Surface Area. Biomacromolecules 2013, 14 (11), 4053–4060.
(168) Palenčár, P.; Bleha, T. Folding of Α-Helices into Bundles in Long Polyalanines. Computational and Theoretical Chemistry 2013, 1006, 62–69.
(169) Rathore, O.; Sogah, D. Y. Nanostructure Formation through Β-Sheet Self-Assembly in Silk-Based Materials. Macromolecules 2001, 34 (5), 1477–1486.
(170) Wang, Y.-C.; Xia, H.; Yang, X.-Z.; Wang, J. Synthesis and Thermoresponsive Behaviors of Biodegradable Pluronic Analogs. J. Polym. Sci. A Polym. Chem. 2009, 47 (22), 6168–6179.
(171) Cheng, Y.; He, C.; Ding, J.; Xiao, C.; Zhuang, X.; Chen, X. Thermosensitive Hydrogels Based on Polypeptides for Localized and Sustained Delivery of Anticancer Drugs. Biomaterials 2013, 34 (38), 10338–10347.
(172) Ma, J.; Guo, C.; Tang, Y.; Liu, H. 1H NMR Spectroscopic Investigations on the Micellization and Gelation of PEO-PPO-PEO Block Copolymers in Aqueous Solutions. Langmuir 2007, 23 (19), 9596–9605.
(173) Honda, S.; Yamamoto, T.; Tezuka, Y. Tuneable Enhancement of the Salt and Thermal Stability of Polymeric Micelles by Cyclized Amphiphiles. Nat Commun 2013, 4, 1574.
(174) Kim, M. S.; Hyun, H.; Seo, K. S.; Cho, Y. H.; Won Lee, J.; Rae Lee, C.; Khang, G.; Lee, H. B. Preparation and Characterization of MPEG–PCL Diblock Copolymers with Thermo-Responsive Sol–gel–sol Phase Transition. J. Polym. Sci. A Polym. Chem. 2006, 44 (18), 5413–5423.
(175) Jeong, B.; Bae, Y. H.; Kim, S. W. Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions. Macromolecules 1999, 32 (21), 7064–7069.
(176) Hwang, Y.-S.; Chiang, P.-R.; Hong, W.-H.; Chiao, C.-C.; Chu, I.-M.; Hsiue, G.-H.; Shen, C.-R. Study in Vivo Intraocular Biocompatibility of in Situ Gelation Hydrogels: poly(2-Ethyl Oxazoline)-Block-Poly(ε-Caprolactone)-Block-poly(2-Ethyl Oxazoline) Copolymer, Matrigel and Pluronic F127. PLoS ONE 2013, 8 (7), e67495.
(177) Gu, Z.; Alexandridis, P. Osmotic Stress Measurements of Intermolecular Forces in Ordered Assemblies Formed by Solvated Block Copolymers. Macromolecules 2004, 37 (3), 912–924.
(178) Park, K. D.; Jung, H. H.; Son, J. S.; Rhie, J. W.; Park, K. D.; Ahn, K. D.; Han, D. K. Thermosensitive and Cell-Adhesive Pluronic Hydrogels for Human Adipose-Derived Stem Cells. Key Engineering Materials 2007, 342-343, 301–304.
(179) Chung, C.; Burdick, J. A. Influence of Three-Dimensional Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2009, 15 (2), 243–254.
(180) Toh, W. S.; Lee, E. H.; Guo, X.-M.; Chan, J. K. Y.; Yeow, C. H.; Choo, A. B.; Cao, T. Cartilage Repair Using Hyaluronan Hydrogel-Encapsulated Human Embryonic Stem Cell-Derived Chondrogenic Cells. Biomaterials 2010, 31 (27), 6968–6980.
(181) Lu, Z.; Doulabi, B. Z.; Huang, C.; Bank, R. A.; Helder, M. N. Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape. Tissue Eng Part A 2010, 16 (1), 81–90.
(182) Bosnakovski, D.; Mizuno, M.; Kim, G.; Takagi, S.; Okumura, M.; Fujinaga, T. Chondrogenic Differentiation of Bovine Bone Marrow Mesenchymal Stem Cells (MSCs) in Different Hydrogels: Influence of Collagen Type II Extracellular Matrix on MSC Chondrogenesis. Biotechnol. Bioeng. 2006, 93 (6), 1152–1163.
(183) Ho, S. T. B.; Cool, S. M.; Hui, J. H.; Hutmacher, D. W. The Influence of Fibrin Based Hydrogels on the Chondrogenic Differentiation of Human Bone Marrow Stromal Cells. Biomaterials 2010, 31 (1), 38–47.
(184) Hao, T.; Wen, N.; Cao, J.-K.; Wang, H.-B.; Lü, S.-H.; Liu, T.; Lin, Q.-X.; Duan, C.-M.; Wang, C.-Y. The Support of Matrix Accumulation and the Promotion of Sheep Articular Cartilage Defects Repair in Vivo by Chitosan Hydrogels. Osteoarthr. Cartil. 2010, 18 (2), 257–265.
(185) Hoemann, C. D.; Hurtig, M.; Rossomacha, E.; Sun, J.; Chevrier, A.; Shive, M. S.; Buschmann, M. D. Chitosan-Glycerol Phosphate/blood Implants Improve Hyaline Cartilage Repair in Ovine Microfracture Defects. J Bone Joint Surg Am 2005, 87 (12), 2671–2686.
(186) Cohen, D. L.; Lipton, J. I.; Bonassar, L. J.; Lipson, H. Additive Manufacturing for in Situ Repair of Osteochondral Defects. Biofabrication 2010, 2 (3), 035004.
(187) Lima, E. G.; Bian, L.; Mauck, R. L.; Byers, B. A.; Tuan, R. S.; Ateshian, G. A.; Hung, C. T. The Effect of Applied Compressive Loading on Tissue-Engineered Cartilage Constructs Cultured with TGF-beta3. Conf Proc IEEE Eng Med Biol Soc 2006, 1, 779–782.
(188) Lange, J.; Follak, N.; Nowotny, T.; Merk, H. [Results of SaluCartilage implantation for stage IV chondral defects in the knee joint area]. Unfallchirurg 2006, 109 (3), 193–199.
(189) Sharma, B.; Williams, C. G.; Khan, M.; Manson, P.; Elisseeff, J. H. In Vivo Chondrogenesis of Mesenchymal Stem Cells in a Photopolymerized Hydrogel. Plast. Reconstr. Surg. 2007, 119 (1), 112–120.
(190) Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Yaremchuk, M.; Langer, R. Transdermal Photopolymerization of Poly(ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. Plast. Reconstr. Surg. 1999, 104 (4), 1014–1022.
(191) Zhang, S.; Holmes, T. C.; DiPersio, C. M.; Hynes, R. O.; Su, X.; Rich, A. Self-Complementary Oligopeptide Matrices Support Mammalian Cell Attachment. Biomaterials 1995, 16 (18), 1385–1393.
(192) Erickson, I. E.; Huang, A. H.; Chung, C.; Li, R. T.; Burdick, J. A.; Mauck, R. L. Differential Maturation and Structure-Function Relationships in Mesenchymal Stem Cell- and Chondrocyte-Seeded Hydrogels. Tissue Eng Part A 2009, 15 (5), 1041–1052.
(193) Maher, S. A.; Mauck, R. L.; Rackwitz, L.; Tuan, R. S. A Nanofibrous Cell-Seeded Hydrogel Promotes Integration in a Cartilage Gap Model. J Tissue Eng Regen Med 2010, 4 (1), 25–29.
(194) Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J. Self-Assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division: Implications for Cartilage Tissue Repair. PNAS 2002, 99 (15), 9996–10001.
(195) Park, M. H.; Joo, M. K.; Choi, B. G.; Jeong, B. Biodegradable Thermogels. Acc. Chem. Res. 2012, 45 (3), 424–433.
(196) Cheng, Y.; He, C.; Xiao, C.; Ding, J.; Zhuang, X.; Huang, Y.; Chen, X. Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules 2012, 13 (7), 2053–2059.
(197) Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B. Cell Therapy for Skin Wound Using Fibroblast Encapsulated Poly(ethylene Glycol)-poly(L-Alanine) Thermogel. Biomacromolecules 2012, 13 (4), 1106–1111.
(198) Kafienah, W.; Jakob, M.; Démarteau, O.; Frazer, A.; Barker, M. D.; Martin, I.; Hollander, A. P. Three-Dimensional Tissue Engineering of Hyaline Cartilage: Comparison of Adult Nasal and Articular Chondrocytes. Tissue Eng. 2002, 8 (5), 817–826.
(199) Chung, C.; Mesa, J.; Miller, G. J.; Randolph, M. A.; Gill, T. J.; Burdick, J. A. Effects of Auricular Chondrocyte Expansion on Neocartilage Formation in Photocrosslinked Hyaluronic Acid Networks. Tissue Eng 2006, 12 (9), 2665–2673.
(200) Biochemical Methods for the Analysis of Tissue-Engineered Cartilage - Springer. In; Hollander, A. P., Hatton, P. V., Eds.; Methods in Molecular BiologyTM; Humana Press, 2004.
(201) Yu, L.; Chang, G.; Zhang, H.; Ding, J. Temperature-Induced Spontaneous Sol–gel Transitions of poly(D,L-Lactic Acid-Co-Glycolic Acid)-B-Poly(ethylene Glycol)-B-poly(D,L-Lactic Acid-Co-Glycolic Acid) Triblock Copolymers and Their End-Capped Derivatives in Water. J. Polym. Sci. A Polym. Chem. 2007, 45 (6), 1122–1133.
(202) Vijayadas, K. N.; Nair, R. V.; Gawade, R. L.; Kotmale, A. S.; Prabhakaran, P.; Gonnade, R. G.; Puranik, V. G.; Rajamohanan, P. R.; Sanjayan, G. J. Ester vs. Amide on Folding: A Case Study with a 2-Residue Synthetic Peptide. Org. Biomol. Chem. 2013, 11 (48), 8348–8356.
(203) Poland, D.; Scheraga, H. A. Theory of Helix-Coil Transitions in Biopolymers: Statistical Mechanical Theory of Order-Disorder Transitions in Biological Macromolecules; Academic Press, 1970.
(204) Chakrabartty, A.; Baldwin, R. L. Stability of Α-Helices. In Advances in Protein Chemistry; C.B. Anfinsen, F. M. R., John T. Edsall and David S. Eisenberg, Ed.; Protein Stability; Academic Press, 1995; Vol. 46, pp 141–176.
(205) Blondelle, S. E.; Pérez-Payá, E.; Allicotti, G.; Forood, B.; Houghten, R. A. Peptide Binding Domains Determined through Chemical Modification of the Side-Chain Functional Groups. Biophys J 1995, 69 (2), 604–611.
(206) Park, H.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Mikos, A. G. Injectable Biodegradable Hydrogel Composites for Rabbit Marrow Mesenchymal Stem Cell and Growth Factor Delivery for Cartilage Tissue Engineering. Biomaterials 2007, 28 (21), 3217–3227.
(207) Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Kasper, F. K.; Mikos, A. G. Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells in Vitro. Biomacromolecules 2009, 10 (3), 541–546.
(208) Darling, E. M.; Athanasiou, K. A. Rapid Phenotypic Changes in Passaged Articular Chondrocyte Subpopulations. J. Orthop. Res. 2005, 23 (2), 425–432.
(209) Galois, L.; Hutasse, S.; Cortial, D.; Rousseau, C. F.; Grossin, L.; Ronziere, M.-C.; Herbage, D.; Freyria, A.-M. Bovine Chondrocyte Behaviour in Three-Dimensional Type I Collagen Gel in Terms of Gel Contraction, Proliferation and Gene Expression. Biomaterials 2006, 27 (1), 79–90.
(210) Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H.-T.; Kim, W.-K.; Jeong Lee, H.; Sohn, Y. S.; Jeong, B. Enzymatically Degradable Temperature-Sensitive Polypeptide as a New in-Situ Gelling Biomaterial. Journal of Controlled Release 2009, 137 (1), 25–30.
(211) Wang, L.-S.; Du, C.; Toh, W. S.; Wan, A. C. A.; Gao, S. J.; Kurisawa, M. Modulation of Chondrocyte Functions and Stiffness-Dependent Cartilage Repair Using an Injectable Enzymatically Crosslinked Hydrogel with Tunable Mechanical Properties. Biomaterials 2014, 35 (7), 2207–2217.
(212) Zhang, Q.; Lu, H.; Kawazoe, N.; Chen, G. Pore Size Effect of Collagen Scaffolds on Cartilage Regeneration. Acta Biomaterialia 2014, 10 (5), 2005–2013.
(213) Oh, S. H.; Kim, T. H.; Im, G. I.; Lee, J. H. Investigation of Pore Size Effect on Chondrogenic Differentiation of Adipose Stem Cells Using a Pore Size Gradient Scaffold. Biomacromolecules 2010, 11 (8), 1948–1955.
(214) Matsiko, A.; Gleeson, J. P.; O’Brien, F. J. Scaffold Mean Pore Size Influences Mesenchymal Stem Cell Chondrogenic Differentiation and Matrix Deposition. Tissue Engineering Part A 2014, 21 (3-4), 486–497.
(215) Yamane, S.; Iwasaki, N.; Kasahara, Y.; Harada, K.; Majima, T.; Monde, K.; Nishimura, S.; Minami, A. Effect of Pore Size on in Vitro Cartilage Formation Using Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers. J. Biomed. Mater. Res. 2007, 81A (3), 586–593.
(216) Kwon, H.; Sun, L.; Cairns, D. M.; Rainbow, R. S.; Preda, R. C.; Kaplan, D. L.; Zeng, L. The Influence of Scaffold Material on Chondrocytes in Inflammatory Conditions. Acta Biomater 2013, 9 (5), 6563–6575.
(217) Wimpenny, I.; Ashammakhi, N.; Yang, Y. Chondrogenic Potential of Electrospun Nanofibres for Cartilage Tissue Engineering. J Tissue Eng Regen Med 2012, 6 (7), 536–549.
(218) Van Susante, J. L.; Buma, P.; van Osch, G. J.; Versleyen, D.; van der Kraan, P. M.; van der Berg, W. B.; Homminga, G. N. Culture of Chondrocytes in Alginate and Collagen Carrier Gels. Acta Orthop Scand 1995, 66 (6), 549–556.
(219) Yamaoka, H.; Asato, H.; Ogasawara, T.; Nishizawa, S.; Takahashi, T.; Nakatsuka, T.; Koshima, I.; Nakamura, K.; Kawaguchi, H.; Chung, U.; et al. Cartilage Tissue Engineering Using Human Auricular Chondrocytes Embedded in Different Hydrogel Materials. J Biomed Mater Res A 2006, 78 (1), 1–11.
(220) Widelitz, R. B.; Jiang, T. X.; Murray, B. A.; Chuong, C. M. Adhesion Molecules in Skeletogenesis: II. Neural Cell Adhesion Molecules Mediate Precartilaginous Mesenchymal Condensations and Enhance Chondrogenesis. J. Cell. Physiol. 1993, 156 (2), 399–411.
(221) Frenz, D. A.; Jaikaria, N. S.; Newman, S. A. The Mechanism of Precartilage Mesenchymal Condensation: A Major Role for Interaction of the Cell Surface with the Amino-Terminal Heparin-Binding Domain of Fibronectin. Dev. Biol. 1989, 136 (1), 97–103.
(222) Lotz, M. K.; Otsuki, S.; Grogan, S. P.; Sah, R.; Terkeltaub, R.; D’Lima, D. CARTILAGE CELL CLUSTERS. Arthritis Rheum 2010, 62 (8), 2206–2218.
(223) Quintavalla, J.; Kumar, C.; Daouti, S.; Slosberg, E.; Uziel-Fusi, S. Chondrocyte Cluster Formation in Agarose Cultures as a Functional Assay to Identify Genes Expressed in Osteoarthritis. J. Cell. Physiol. 2005, 204 (2), 560–566.
(224) Kachi, N. D.; Otaka, A.; Sim, S.; Kuwana, Y.; Tamada, Y.; Sunaga, J.; Adachi, T.; Tomita, N. Observation of Chondrocyte Aggregate Formation and Internal Structure on Micropatterned Fibroin-Coated Surface. Biomed Mater Eng 2010, 20 (1), 55–63.
(225) Bailey, B. M.; Hui, V.; Fei, R.; Grunlan, M. A. Tuning PEG-DA Hydrogel Properties via Solvent-Induced Phase Separation (SIPS). Journal of Materials Chemistry 2011, 21 (46), 18776.
(226) Ko, C.-Y.; Yang, C.-Y.; Yang, S.-R.; Ku, K.-L.; Tsao, C.-K.; Chwei-Chin Chuang, D.; Chu, I.-M.; Cheng, M.-H. Cartilage Formation through Alterations of Amphiphilicity of Poly(ethylene Glycol)–poly(caprolactone) Copolymer Hydrogels. RSC Advances 2013, 3 (48), 25769.
(227) Klangjorhor, J.; Nimkingratana, P.; Settakorn, J.; Pruksakorn, D.; Leerapun, T.; Arpornchayanon, O.; Rojanasthien, S.; Kongtawelert, P.; Pothacharoen, P. Hyaluronan Production and Chondrogenic Properties of Primary Human Chondrocyte on Gelatin Based Hematostatic Spongostan Scaffold. Journal of Orthopaedic Surgery and Research 2012, 7 (1), 40.
(228) Beier, J. P.; Klumpp, D.; Rudisile, M.; Dersch, R.; Wendorff, J. H.; Bleiziffer, O.; Arkudas, A.; Polykandriotis, E.; Horch, R. E.; Kneser, U. Collagen Matrices from Sponge to Nano: New Perspectives for Tissue Engineering of Skeletal Muscle. BMC Biotechnology 2009, 9 (1), 34.
(229) Crabb, R. A. B.; Chau, E. P.; Decoteau, D. M.; Hubel, A. Microstructural Characteristics of Extracellular Matrix Produced by Stromal Fibroblasts. Ann Biomed Eng 2006, 34 (10), 1615–1627.
(230) Hoffman, A. S.; Stayton, P. S.; Press, O.; Murthy, N.; Lackey, C. A.; Cheung, C.; Black, F.; Campbell, J.; Fausto, N.; Kyriakides, T. R.; et al. Design of “Smart” Polymers That Can ­direct Intracellular Drug Delivery. Polym. Adv. Technol. 2002, 13 (10-12), 992–999.
(231) Kokufuta, M. K.; Sato, S.; Kokufuta, E. Swelling-Shrinking Behavior of Chemically Cross-Linked Polypeptide Gels from Poly(α-L-Lysine), Poly(α-DL-Lysine), Poly(ɛ-L-Lysine) and Thermally Prepared Poly(lysine): Effects of pH, Temperature and Additives in the Solution. Colloids Surf B Biointerfaces 2011, 87 (2), 299–309.
(232) Dewan, J. C.; Mikami, B.; Hirose, M.; Sacchettini, J. C. Structural Evidence for a pH-Sensitive Dilysine Trigger in the Hen Ovotransferrin N-Lobe: Implications for Transferrin Iron Release. Biochemistry 1993, 32 (45), 11963–11968.
(233) Leung, C.-Y.; Palmer, L. C.; Kewalramani, S.; Qiao, B.; Stupp, S. I.; Olvera de la Cruz, M.; Bedzyk, M. J. Crystalline Polymorphism Induced by Charge Regulation in Ionic Membranes. Proc Natl Acad Sci U S A 2013, 110 (41), 16309–16314.
(234) Talibuddin, S.; Wu, L.; Runt, J.; Lin, J. S. Microstructure of Melt-Miscible, Semicrystalline Polymer Blends. Macromolecules 1996, 29 (23), 7527–7535.
(235) Beyermann, J.; Kukula, H. Poly(ethylene Oxide)-B-Poly(l-Lysine) Complexes with Retinoic Acid. Macromolecules 2000, 33 (16), 5906–5911.
(236) Chu, K. A.; Yalkowsky, S. H. Predicting Aqueous Solubility: The Role of Crystallinity. Curr. Drug Metab. 2009, 10 (10), 1184–1191.
(237) Eckelt, A.; Eckelt, J.; Wolf, B. Solubility of Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc., 2002.
(238) Makadia, H. K.; Siegel, S. J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel) 2011, 3 (3), 1377–1397.
(239) Barrow, C. J.; Yasuda, A.; Kenny, P. T.; Zagorski, M. G. Solution Conformations and Aggregational Properties of Synthetic Amyloid Beta-Peptides of Alzheimer’s Disease. Analysis of Circular Dichroism Spectra. J. Mol. Biol. 1992, 225 (4), 1075–1093.
(240) Hilbich, C.; Kisters-Woike, B.; Reed, J.; Masters, C. L.; Beyreuther, K. Aggregation and Secondary Structure of Synthetic Amyloid Beta A4 Peptides of Alzheimer’s Disease. J. Mol. Biol. 1991, 218 (1), 149–163.
(241) Yui, N.; Mrsny, R. J.; Park, K. Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems; CRC Press, 2004.
(242) Kelly, S. M.; Price, N. C. The Use of Circular Dichroism in the Investigation of Protein Structure and Function. Current Protein and Peptide Science 2000, 1 (4), 349–384.
(243) Forood, B.; Feliciano, E. J.; Nambiar, K. P. Stabilization of Alpha-Helical Structures in Short Peptides via End Capping. Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (3), 838–842.
(244) Jain, N.; Trabelsi, S.; Guillot, S.; McLoughlin, D.; Langevin, D.; Letellier, P.; Turmine, M. Critical Aggregation Concentration in Mixed Solutions of Anionic Polyelectrolytes and Cationic Surfactants. Langmuir 2004, 20 (20), 8496–8503.
(245) Kuo, S.-W.; Lee, H.-F.; Huang, C.-F.; Huang, C.-J.; Chang, F.-C. Synthesis and Self-Assembly of Helical Polypeptide-Random Coil Amphiphilic Diblock Copolymer. J. Polym. Sci. A Polym. Chem. 2008, 46 (9), 3108–3119.
(246) Van Domeselaar, G. H.; Kwon, G. S.; Andrew, L. C.; Wishart, D. S. Application of Solid Phase Peptide Synthesis to Engineering PEO-Peptide Block Copolymers for Drug Delivery. Colloids and Surfaces B: Biointerfaces 2003, 30 (4), 323–334.
(247) Adams, M. L.; Kwon, G. S. The Effects of Acyl Chain Length on the Micelle Properties of Poly(ethylene Oxide)-Block-poly(N-Hexyl-L-Aspartamide)-Acyl Conjugates. J Biomater Sci Polym Ed 2002, 13 (9), 991–1006.
(248) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C.; Semenov, A. N.; Boden, N. Hierarchical Self-Assembly of Chiral Rod-like Molecules as a Model for Peptide Beta -Sheet Tapes, Ribbons, Fibrils, and Fibers. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (21), 11857–11862.
(249) Yokoi, H.; Kinoshita, T. Strategy for Designing Self-Assembling Peptides to Prepare Transparent Nanofiber Hydrogel at Neutral pH. Journal of Nanomaterials 2012, 2012.
(250) Nowak, A. P.; Breedveld, V.; Pine, D. J.; Deming, T. J. Unusual Salt Stability in Highly Charged Diblock Co-Polypeptide Hydrogels. J. Am. Chem. Soc. 2003, 125 (50), 15666–15670.
(251) Aggeli, A.; Bell, M.; Boden, N.; Carrick, L. M.; Strong, A. E. Self-Assembling Peptide Polyelectrolyte Β-Sheet Complexes Form Nematic Hydrogels. Angewandte Chemie International Edition 2003, 42 (45), 5603–5606.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊