跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃玠誠
研究生(外文):Huang, Chieh-Cheng
論文名稱:結合抗氧化劑與可注射式幹細胞球體之複合式療法於缺血性疾病治療之應用
論文名稱(外文):A Combination Strategy Using An Antioxidant and Injectable Stem Cell Aggregates for Treating Ischemic Diseases
指導教授:宋信文
指導教授(外文):Sung, Hsing-Wen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
中文關鍵詞:細胞療法缺血性疾病血管新生抗氧化劑活性氧化物質
外文關鍵詞:cell therapyischemic diseasesangiogenesisantioxidantreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
細胞治療在組織工程與再生醫學領域上,為一相當具有前瞻性的治療方法。曾有研究群利用注射幹細胞的方式針對缺血性疾病進行治療,但效果有限。其原因在於單顆懸浮式的細胞在注射過程中,會有大量細胞流失的現象,且植入的細胞過於分散在組織各處,使其治療效果受到限制。此外,缺血組織內部會因發炎反應而產生大量的活性氧化物質(reactive oxygen species, ROS),傷害細胞中的核酸、蛋白質與脂質,使植入體內的細胞不易貼附生長而發揮治療效果。本實驗室過去的研究中,已開發出細胞球體培養系統,並利用此系統培養出大小均一之間葉幹細胞(mesenchymal stem cell, MSC)球體,且其體積足以鑲嵌在肌肉間隙中,避免細胞流失。實驗結果顯示,該細胞球體具有較大的體積與完整的細胞外間質結構,因此移植後留存於注射部位的細胞數量遠多於單顆懸浮式的細胞。在本論文中,我們使用上述之細胞球體培養系統,結合人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)與人類臍帶血間葉幹細胞(cord-blood MSC, cbMSC),製備兩者均勻混和之三維細胞球體,並將其應用於促進缺血組織血管新生之研究。另一方面,細胞球體內部的細胞可能會因缺氧而活化低氧誘導因子及其他生長因子,使該細胞球體具有更高的血管新生誘導能力。在本論文的第一部分裡,我們發現HUVEC/cbMSC球體在Matrigel表面形成管狀結構時,會表現大量的血管新生標記αVβ3 integrin,並分泌多種生長因子,證明其具有促進血管新生之潛能。在動物實驗中,我們將HUVEC/cbMSC細胞球體注射至大鼠心肌梗塞病灶處,再分別以正子放射造影、單光子放射電腦斷層掃描與心臟超音波觀察梗塞心肌的血管新生、血液灌流變化與心室功能的恢復情況。實驗結果顯示,移植HUVEC/cbMSC細胞球體可以有效促進梗塞部位的血管新生,使得缺血組織的血液灌流恢復,進而促進心室功能的改善。為了進一步提升移植細胞的貼附能力及其後續的治療效果,在本論文的第二部分中,我們使用抗氧化劑N-乙醯半胱氨酸(N-acetylcysteine, NAC)與細胞球體一起進行注射,期望藉由NAC的抗氧化功能降低缺血組織內的氧化壓力。體外實驗結果顯示,NAC可以有效降低過氧化氫的氧化力,使細胞球體於氧化壓力下的貼附、生長與血管新生能力得以維持。在動物實驗部分,我們將HUVEC/cbMSC細胞球體懸浮於含有NAC的食鹽水中,並注射至以手術方式建立的小鼠左下肢缺血部位。實驗結果顯示,NAC可有效降低缺血組織內的氧化壓力,提升植入細胞的留存率。而從單光子放射電腦斷層掃描與組織免疫染色的結果中,我們發現同時注射NAC與細胞球體可以有效誘導組織血管新生,改善患部血液灌流情況,減緩小鼠下肢萎縮。由以上實驗結果可知,內部缺氧之HUVEC/cbMSC細胞球體可以有效地促進缺血組織的血管新生;而結合抗氧化劑NAC與細胞球體之複合式療法則能更進一步提升細胞移植後的留存率與治療效果,未來或有應用於缺血性疾病治療的潛能。
A recurring obstacle for cell-base strategies in treating ischemic diseases continues to be the significant cell loss during the process of transplantation. Additionally, the recipient microenvironment in the ischemic tissues may confer an elevated state of oxidative stress to the administered cells, thus hindering their adhesion and retention to the therapeutic target, ultimately limiting the scope of therapeutic benefit. In our previous studies, a thermo-responsive methylcellulose (MC) hydrogel system was employed to grow three-dimensional cell aggregates for the treatment of ischemic diseases. By using human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs), the fabricated cell aggregates have great potential in inducing therapeutic angiogenesis. Using a rat model of myocardial infarction (MI), the cell aggregates that were transplanted intramuscularly via local injection were demonstrated to be entrapped effectively in the interstices of muscular tissues. The engrafted cells subsequently promoted considerable angiogenesis, improving the post-infarcted heart function. Although the therapeutic efficacy of HUVEC/cbMSC aggregates appears to be favorable, the mechanism of their angiogenesis in repairing ischemic tissues remains elusive. In Study I, the process of cell-mediated angiogenesis and its therapeutic effects that are induced by exogenously engrafted HUVEC/cbMSC aggregates in rats with MI are investigated. By maximizing cell‒cell and cell‒ECM communications and establishing a hypoxic microenvironment in their inner cores, these cell aggregates are capable of forming widespread tubular networks together with the angiogenic marker αvβ3 integrin when grown on Matrigel. The aggregates of HUVECs/cbMSCs are exogenously engrafted into the peri-infarct zones of rats with MI via direct local injection. Multimodality noninvasive imaging techniques, including positron emission tomography, single photon emission computed tomography, and echocardiography, are employed to monitor serially the beneficial effects of cell therapy on angiogenesis, blood perfusion, and global/regional ventricular function, respectively. The myocardial perfusion is correlated with ventricular contractility, demonstrating that the recovery of blood perfusion helps to restore regional cardiac function, leading to the improvement in global ventricular performance. These experimental data reveal the efficacy of the exogenous transplantation of 3D cell aggregates after MI and elucidate the mechanism of cell-mediated therapeutic angiogenesis for cardiac repair. In Study II, we hypothesize that by concurrent delivery of an antioxidant N-acetylcysteine (NAC), the cell retention following transplantation of HUVEC/cbMSC aggregates in a mouse model with hindlimb ischemia may be significantly augmented. Our in vitro results demonstrate that the antioxidant NAC can successfully restore the reactive oxygen species (ROS)-impaired cell adhesion and recover the reduced angiogenic potential of HUVEC/cbMSC aggregates. In the animal study, we found that by scavenging the ROS generated in ischemic tissues, NAC has great potential to establish a receptive cell environment at the early stage of cell transplantation, thereby promoting the cell adhesion, retention, and survival of engrafted cell aggregates, which subsequently enhances therapeutic angiogenesis and ultimately results in blood flow recovery and limb salvage. The combinatory strategy using an antioxidant and cell aggregates may offer a new opportunity to boost the therapeutic efficacy for the treatment of ischemic diseases.
摘要 I
ABSTRACT II
TABLE OF CONTENT III
LIST OF FIGURES V
CHAPTER 1 – INTRODUCTION 1
CHAPTER 2 – STUDY I 6
2.1. Materials and Methods 6
2.1.1. Cell culture 6
2.1.2. Construction of 3D HUVEC/cbMSC aggregates 7
2.1.3. Tube formation assay 8
2.1.4. Animal study 8
2.1.5. SPECT and PET imaging 9
2.1.6. Echocardiography 10
2.1.7. Histological analyses 10
2.1.8. Statistical analysis 11
2.2. Results and Discussion 11
2.2.1. Construction of 3D HUVEC/cbMSC aggregates and their characteristics 11
2.2.2. Angiogenic potency of 3D HUVEC/cbMSC aggregates 12
2.2.3. Noninvasive molecular imaging of myocardial angiogenesis and perfusion recovery 16
2.2.4. Noninvasive assessment of global/regional cardiac function by echocardiography 17
2.2.5. Histological analyses 22
2.3. Conclusions 26
CHAPTER 3 – STUDY II 27
3.1. Materials and Methods 27
3.1.1. Cytotoxicity of NAC and its capacity to scavenge ROS 27
3.1.2. Adhesion and spreading of cell aggregates under oxidative stress 28
3.1.3. Tube formation assay 30
3.1.4. Animal study 30
3.1.5. Evaluation of oxidative stress in ischemic limbs 31
3.1.6. Assessment of cell retention of the transplanted HUVEC/cbMSC aggregates 31
3.1.7. Investigation of blood flow recovery 32
3.1.8. Histological analysis 32
3.1.9. Statistical analysis 33
3.2. Results and Discussion 33
3.2.1. Cytotoxicity and antioxidant capacity of NAC 33
3.2.2. Effects of NAC on restoring the ROS-impaired cell adhesion 34
3.2.3. Tube formation assay 39
3.2.4. In vivo reduction of oxidative stress by concurrent delivery of NAC 42
3.2.5. Enhancement of cell retention by NAC 44
3.2.6. Therapeutic effects 44
3.3. Conclusions 49
REFERENCE 50


[1] Laflamme MA, Murry CE. Heart regeneration. Nature 2011;473:326–35.
[2] Dolgin E. Taking tissue engineering to heart. Nat Med 2011;17:1032–5.
[3] Widmer LK, Greensher A, Kannel WB. Occlusion of Peripheral Arteries: A Study of 6,400 Working Subjects. Circulation 1964;30:836–52.
[4] Segers VFM, Revin V, Wu W, Qiu H, Yan Z, Lee RT, Sandrasagra A. Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease. Circulation 2011;123:1306–15.
[5] Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845–56.
[6] Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT, Rossi MID, Carvalho AC, Dutra HS, Dohmann HJF, Silva GV, Belém L, Vivacqua R, Rangel FOD, Esporcatte R, Geng YJ, Vaughn WK, Assad JAR, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–302.
[7] Ye Z, Zhou Y, Cai H, Tan W. Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 2011;63:688–97.
[8] Wang F, Guan J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev 2010;62:784–97.
[9] Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012;148:399–408.
[10] Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013;113:810–34.
[11] Deutsch M-A, Sturzu A, Wu SM. At a crossroad: cell therapy for cardiac repair. Circ Res 2013;112:884–90.
[12] Strauer B-E, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 2011;58:1095–104.
[13] Dixon JA, Gorman RC, Stroud RE, Bouges S, Hirotsugu H, Gorman JH, Martens TP, Itescu S, Schuster MD, Plappert T, St John-Sutton MG, Spinale FG. Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation 2009;120:S220–9.
[14] Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res 2013;112:1288–302.
[15] Bhang SH, Lee S, Lee T-J, La W-G, Yang HS, Cho S-W, Kim B-S. Three-dimensional cell grafting enhances the angiogenic efficacy of human umbilical vein endothelial cells. Tissue Engineering Part A 2012;18:310–9.
[16] Masuda S, Shimizu T, Yamato M, Okano T. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 2008;60:277–85.
[17] Matsuura K, Haraguchi Y, Shimizu T, Okano T. Cell sheet transplantation for heart tissue repair. J Control Release 2013;169:336–40.
[18] Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, Kinsey AM, Demaria AN, Dib N, Christman KL. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 2012;59:751–63.
[19] Fedak PWM, Bai L, Turnbull J, Ngu J, Narine K, Duff HJ. Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism. Circ Heart Fail 2012;5:349–56.
[20] Song H, Cha M-J, Song B-W, Kim I-K, Chang W, Lim S, Choi EJ, Ham O, Lee S-Y, Chung N, Jang Y, Hwang K-C. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 2010;28:555–63.
[21] Psaltis PJ, Peterson KM, Xu R, Franchi F, Witt T, Chen IY, Lerman A, Simari RD, Gambhir SS, Rodriguez-Porcel M. Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging 2013;6:795–802.
[22] Kim CK, Ahmed AU, Auffinger B, Ulasov IV, Tobias AL, Moon K-S, Lesniak MS. N-acetylcysteine amide augments the therapeutic effect of neural stem cell-based antiglioma oncolytic virotherapy. Mol Ther 2013;21:2063–73.
[23] Drowley L, Okada M, Beckman S, Vella J, Keller B, Tobita K, Huard J. Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther 2010;18:1865–73.
[24] Wang CC, Chen CH, Hwang SM, Lin WW, Huang CH, Lee WY, Chang Y, Sung HW. Spherically symmetric mesenchymal stromal cell bodies inherent with endogenous extracellular matrices for cellular cardiomyoplasty. Stem Cells 2009;27:724–32.
[25] Lee WY, Chang YH, Yeh YC, Chen CH, Lin KM, Huang CC, Chang Y, Sung HW. The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials 2009;30:5505–13.
[26] Liang HF, Hong MH, Ho RM, Chung CK, Lin YH, Chen CH, Sung HW. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules 2004;5:1917–25.
[27] Chen CH, Tsai CC, Chen W, Mi FL, Liang HF, Chen SC, Sung HW. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules 2006;7:736–43.
[28] Yang MJ, Chen CH, Lin PJ, Huang CH, Chen W, Sung HW. Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules 2007;8:2746–52.
[29] Huang CC, Liao CK, Yang MJ, Chen CH, Hwang SM, Hung YW, Chang Y, Sung HW. A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch. Biomaterials 2010;31:6218–27.
[30] Shen M, Horbett TA. The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res 2001;57:336–45.
[31] Huang CC, Liao ZX, Chen DY, Hsiao CW, Chang Y, Sung HW. Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Adv Healthc Mater 2014;3:1133–48.
[32] Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9:685–93.
[33] Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P-N, Traas J, Schugar R, Deasy BM, Badylak S, Buhring H-J, Giacobino J-P, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301–13.
[34] Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng 2007;13:2087–94.
[35] Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B, Reviews 2008;14:61–86.
[36] Chen DY, Wei HJ, Lin KJ, Huang CC, Wang CC, Wu CT, Chao KT, Chen KJ, Chang Y, Sung HW. Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials 2013;34:1995–2004.
[37] Huang CC, Chen DY, Wei HJ, Lin KJ, Wu CT, Lee TY, Hu HY, Hwang SM, Chang Y, Sung HW. Hypoxia-induced therapeutic neovascularization in a mouse model of an ischemic limb using cell aggregates composed of HUVECs and cbMSCs. Biomaterials 2013;34:9441–50.
[38] Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014;76:2–20.
[39] Johnson LL, Schofield L, Donahay T, Bouchard M, Poppas A, Haubner R. Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc Imaging 2008;1:500–10.
[40] Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007;100:782–94.
[41] De S, Razorenova O, McCabe NP, O'Toole T, Qin J, Byzova TV. VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci USA 2005;102:7589–94.
[42] Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marbán E. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013;5:191–209.
[43] Hung CJ, Yao CL, Cheng FC, Wu ML, Wang TH, Hwang SM. Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy 2010;12:455–65.
[44] Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 2011;32:5558–67.
[45] Wu MC, Gao DW, Sievers RE, Lee RJ, Hasegawa BH, Dae MW. Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 2003;42:576–82.
[46] Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012;126:S29–37.
[47] Hoit BD. Strain and Strain Rate Echocardiography and Coronary Artery Disease. Circ Cardiovasc Imaging 2011;4:179–90.
[48] Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 2010;121:293–305.
[49] Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, Da Violante G, Gourlaouen M, Salih M, Jones MC, Jones DT, Saunders G, Kostourou V, Perron-Sierra F, Norman JC, Tucker GC, Hodivala-Dilke KM. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 2009;15:392–400.
[50] Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011;63:300–11.
[51] Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature 2005;438:937–45.
[52] Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert J-M, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8:831–40.
[53] Möller B, Rasmussen C, Lindblom B, Olovsson M. Expression of the angiogenic growth factors VEGF, FGF-2, EGF and their receptors in normal human endometrium during the menstrual cycle. Mol. Hum. Reprod. 2001;7:65–72.
[54] Marcelo KL, Goldie LC, Hirschi KK. Regulation of endothelial cell differentiation and specification. Circ Res 2013;112:1272–87.
[55] Reant P, Labrousse L, Lafitte S, Bordachar P, Pillois X, Tariosse L, Bonoron-Adele S, Padois P, Deville C, Roudaut R, Santos Dos P. Experimental Validation of Circumferential, Longitudinal, and Radial 2-Dimensional Strain During Dobutamine Stress Echocardiography in Ischemic Conditions. J Am Coll Cardiol 2008;51:149–57.
[56] Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012;10:244–58.
[57] Park J, Kim B, Han J, Oh J, Park S, Ryu S, Jung S, Shin J-Y, Lee BS, Hong BH, Choi D, Kim B-S. Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 2015;9:4987–99.
[58] Herreros L, Rodríguez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabañas C, Sánchez-Madrid F, Longo N, Turner CE, Sánchez-Mateos P. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem 2000;275:26436–40.
[59] Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 2007;179:1043–57.
[60] Strömblad S, Cheresh DA. Cell adhesion and angiogenesis. Trends Cell Biol. 1996;6:462–8.
[61] Arnaoutova I, Kleinman HK. nprot.2010.6. Nat Protoc 2010;5:628–35.
[62] Li J, Shu Y, Hao T, Wang Y, Qian Y, Duan C, Sun H, Lin Q, Wang C. A chitosan-glutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes. Biomaterials 2013;34:9071–81.
[63] Latham N, Ye B, Jackson R, Lam B-K, Kuraitis D, Ruel M, Suuronen EJ, Stewart DJ, Davis DR. Human blood and cardiac stem cells synergize to enhance cardiac repair when cotransplanted into ischemic myocardium. Circulation 2013;128:S105–12.
[64] Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 2005;102:18171–6.
[65] Kudo T, Hosoyama T, Samura M, Katsura S, Nishimoto A, Kugimiya N, Fujii Y, Li T-S, Hamano K. Hypoxic preconditioning reinforces cellular functions of autologous peripheral blood-derived cells in rabbit hindlimb ischemia model. Biochem Biophys Res Commun 2014;444:370–5.
[66] Wu C. Focal adhesion: a focal point in current cell biology and molecular medicine. Cell Adh Migr 2007;1:13–8.
[67] Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol 2000;2:E231–6.
[68] Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438:932–6.
[69] Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015;84:85–106.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊