跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳琛
研究生(外文):Chen, Chen
論文名稱:利用點擊化學反應使異質奈米粒子組裝為法諾電漿共振體
論文名稱(外文):Using click reaction to assemble chains of heterogeneous nanorods as plasmonic Fano resonator
指導教授:黃哲勳黃哲勳引用關係
指導教授(外文):Huang, Jer Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:表面電漿共振點擊化學奈米粒子
外文關鍵詞:Surface Plasmon ResonancceClick ChemistryNano Particle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
當兩個金屬奈米棒距離非常近時,會發生共振產生耦合會在此間隙中產生非常大且集中的光場,此光場可以增進光與物質之間的作用,也提供奈米尺度下控制光與物質作用的可能。重要的應用之一,是將兩種具不同共振的奈米金屬棒連接,使其耦合時在奈米間隙中產生的極強光場,以有效的增益非線性光學信號,例如混頻或倍頻的產生。另一個重要的應用就是利用金屬棒的亮模態與另一金屬棒的暗模態重疊,而這不對稱金屬棒之間的間隙可以在光譜上產生法諾共振(Fano resonance),其共振位置上呈現極為陡峭的不對稱光譜線,這在生物環境感測上是一個非常重要的現象。到目前為止,前述非均相粒子耦合結構大部分都是經過由上而下(top-down)的製作方式,如電子束顯影製程、聚焦離子束蝕刻,缺點是製作時間長且花費昂貴。我們的目標是使用下而上(bottom-up)的化學反應來製作結構,我們在這裡採用點擊反應(click reaction)來連接兩個不同長寬比的金屬棒,以共價鍵連接兩個經設計過具有不同長寬比的金屬棒,使其在相連後產生預期之共振行為,未來希望可以做為非線性光學增益物質或高靈敏感測器,與下而上的物理蝕刻方式比較,點擊反應的產率幾乎可達90%,間隙長度可調,且可低成本大量製作;與利用DNA共軛螺旋方式相比,點擊反應之鏈結連接是共價鍵,強度高不易分解且不受環境條件影響。
我們利用植晶法合成的奈米金柱表面充滿界面活性劑溴化十六烷基三甲銨的雙層結構。為了合成頭端對頭端的奈米金棒鏈,我們將進行click reaction的分子接在奈米金棒的頭端。在此之前我們必須對奈米金棒進行預處理。我們發現溴化十六烷基三甲銨分子對金的晶面有不同的吸附力,因此我們可以很精準得控制乙腈與水之間的比例以此剝除溴化十六烷基三甲銨的雙層結構。 我們可以獲得頭端是裸露表面、側端是佈滿溴化十六烷基三甲銨分子的奈米金柱,如此一來進行反應的分子可以輕易地接在奈米金柱的頭端。而在奈米金柱鏈的間隙只有2至3奈米。在這麼小的間隙中能夠產生強大的場甚至在非線性光學的範圍中得到有趣的現象。我們利用點擊反應製作的非均相奈米結構的方法可低成本大量製作且結構不易分解,對於奈米偵測以及奈米尺度下的非線性光學信號產生是非常簡單而快速的,希望未來能夠利用自製的結構進行非線性光學信號的調控。


At resonance, two coupled metallic nanorods generate highly enhanced and localized optical field in the gap that promotes light-matter interaction. For coupled heterogeneous nanorods, the highly enhanced field in the gap results in very efficient non-linear optical signal generation at the nanoscale like four-wave mixing. One of the important applications is that if bright mode of short nanorod and the dark mode of long nanorod are turned to spectrally overlap, the resulting asymmetric gap antennas can exhibits asymmetric Fano-like sharp dips in the resonance spectrum, which is of great interest in nano-sensing. So far, well-defined Fano resonators are mostly fabricated using cost inefficient top-down methods, such as electron beam lithography. Our goal is to use click reaction which gives almost 100% product yield to link nanorods with different aspect ratios. Since the nanorods are covered with CTAB bilayer before pre-treatment we have to partially remove the surfactant bilayer in order to bind our linker molecules to the surface of gold nanorods. Here we removed the CTAB surfactant by using acetonitrile. We found that the adsorption of CTAB on Au is facets-dependent and the ratio of ACN to water plays a major role is controlling the partial removal of CTAB bilayer. In order to synthesize head-to-head linkage of nanorods, we have to precisely control the ACN/H2O so that only the ends of nanorods expose and the linker molecules attach only to the exposed ends. In such a way, we generate chains of hetero-nanorods with extremely small gap that ensures a strong coupling and facilitates the asymmetric line shape as well as non-linear signal generation. We have carried out time-dependent spectral analysis on the solution and performed finite-difference time-domain simulations to verify the resonances. Our method is simple, low cost and the product can be used for nano-sensing and nanoscale nonlinear signal generation.
目錄

誌謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
第一章 緒論 1
1. 表面電漿共振 1
1.1 Mie description 2
1.2 Mass-and-Spring model 3
1.3 Fabry-Pérot model 4
2. 表面電漿共振模態與法諾共振 5
2.1 奈米金柱表面電漿共振模態 5
2.2 表面電漿共振的模態耦合 7
2.3 法諾共振(Fano Resonance) 9
3. 點擊化學(Click Chemistry) 11
第二章 研究動機與方法 13
第三章 實驗步驟與結果討論 15
1. 奈米金柱合成 15
1.1 共振位置小於850奈米之短奈米金柱62 16
1.2 共振位置大於850奈米之長奈米金柱63 17
1.3 奈米圓球64 18
1.4 合成結果鑑定與統計 19
2. 奈米金柱表面修飾 21
3. 奈米粒子的點擊反應 25
3.1 同質奈米粒子鏈 26
3.2 異質奈米粒子 32
第四章 理論計算 38
4.1 奈米顆粒間隙計算 38
4.2 時域有限差分法 41
4.2.1. FDTD設置 42
4.2.2. 模擬結果 49
第五章 結論與未來展望 55
第六章 後記 56
第七章 參考文獻 58

1. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev., 1957, 106, 874-881.
2. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, 1988, 111
3. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408, 131-314.
4. K. A.Willets, R. P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. , 2007, 58, 267-297.
5. E. Abbe, Arch. mikrosk. Anat. Entwichlungsmech., 1873, 9, 413-468.
6. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem., 2008, 1, 601-626.
7. H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, H. Xu, Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems. Nano Lett., 2008, 8, 2497-2502.
8. J. P. Camden , J. A. Dieringer , J. Zhao, R. P. Van Duyne Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Acc. Chem. Res., 2008, 41, 1653-1661.
9. T. Liebermann, W. Knoll, Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf., 2000, 171, 115-130.
10. E. Fort, S. Gresillon, Surface enhanced fluorescence. J. Phys. D: Appl. Phys. , 2008, 41, 013001.
11. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, C. Yan, Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Lett., 2009, 9, 3896-3903.
12. P. Biagioni, J-.S-. Huang, B. Hecht, Nanoantennas for visible and infrared radiation. Rep. Prog. Phys., 2012, 75, 024402.
13. L. Novotny, Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. , 2010, 78, 1199-1202.
14. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, Q.-Q. Wang, Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt. Lett., 2011, 36, 1542-1544.
15. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, B. Hecht, Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Lett., 2010, 10, 2105-2110.
16. U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev., 1961, 124, 1866-1878.
17. Andrey E. Miroshnichenko, Sergej Flach, and Yuri S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. , 2010, 82, 2257-2299.
18. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Lett., 2008, 8, 2171-2175.
19. B. Luk'yanchuk, H. Giessen, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 2010, 9, 707-715.
20. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano, 2009, 3, 643-652.
21. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett., 2008, 8, 3983-3988.
22. Y. Sonnefraud, N. Verellen, H.Sobhani, G. A.E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, Peter Nordlander, Stefan A. Maier, Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities. ACS Nano, 2010, 4, 1664-1670.
23. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, N. J. Halas, Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Lett., 2010, 10, 2694-2701.
24. O. Pena-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernandez, M. Garriga, ,M. I. Alonso, Enhanced Fano Resonance in Asymmetrical Au:Ag Heterodimers. J. Phys. Chem. C, 2011, 115, 6410-614.
25. M. Abb, Y.Wang, P. Albella, C. H. de Groot, J. Aizpurua, Otto L. Muskens, Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano, 2012, 6, 6462-6470.
26. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas, Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano, 2010, 4, 819-832.
27. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, V. V. Moshchalkov, Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing. Nano Lett., 2011, 11, 391-397.
28. S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity. J. Phys. Chem. C 2011, 115, 24469-24477.
29. W. Cao, R. Singh, I. A. I Al-Naib, M.-X. He, A. J. Taylor, W.-L. Zhang, Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett., 2012, 37, 3366-3368.
30. A. E. Cetin, H. Altug, Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing. ACS Nano, 2012, 6, 9989-9995.
31. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11, 69-75.
32. A. A. Yanika, A. E. Cetina, M. Huang, A. Artara,S. H. Mousavic, A. Khanikaevc, J. H. Connord, G. Shvetsc, H. Altuga, Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA, 2011, 108, 11784-11789.
33. C. D. Hein, X.-M. Liu, D. Wang, Click Chemistry, A Powerful Tool for Pharmaceutical Sciences. Pharmaceutical Research, 2008, 25, 2216-2230.
34. P. Thirumurugan, D. Matosiuk, K. Jozwiak, Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev., 2013, 113, 4905-4979.
35. H. C. Kolb, M. G. Finn, K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
36. C. L. Cox, J. I. Tietz, K. Sokolowski, J. O. Melby, J. R. Doroghazi, D. A. Mitchell, Nucleophilic 1,4-Additions for Natural Product Discovery. ACS Chem. Biol., 2014, 9, 2014-2022.
37. M. C. Floros, A. L. Leão, S. S. Narine1, Vegetable Oil Derived Solvent, and Catalyst Free “Click Chemistry” Thermoplastic Polytriazoles. Biomed Res. Int., 2014, 2014, 792901.
38. G. London, K.-Y. Chen, G. T. Carroll, B. L. Feringa, Towards Dynamic Control of Wettability by Using Functionalized AltitudinalMolecular Motors on Solid Surfaces. Chem. Eur. J., 2013, 19, 10690-10697.
39. Huisgen, R., Centenary Lecture - 1,3-Dipolar Cycloadditions. Proc. Chem. Soc., 1961, 357-396.
40. https://en.wikipedia.org/wiki/Azide-alkyne_Huisgen_cycloaddition#cite_note-4,
41. C. W. Tornøe, C. Christensen, M. Meldal, Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem., 2002, 67, 3057-3064.
42. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
43. P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, V. V. Fokin, Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(i)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928-3932.
44. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc., 2005, 127, 210-216.
45. J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793-16797.
46. W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, J.-S. Huang, The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano, 2014, 8, 9053-9062.
47. P. Pramod, K. G. Thomas, Plasmon Coupling in Dimers of Au Nanorods. Adv. Mater., 2008, 20, 4300-4305.
48. H. Yao, C. Yi, C.-H. Tzang, J. Zhu, M. Yang, DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures. Nanotechnology, 2007, 18, 015102.
49. R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc., 2003, 125, 1643-1654.
50. Z. Chen, X. Lan, Y.-C. Chiu, X. Lu, W. Ni, H. Gao, Q. Wang, Strong Chiroptical Activities in Gold Nanorod Dimers Assembled Using DNA Origami Templates. ACS Phtonics, 2015, 2, 392-397.
51. Y.-T. Chan, S. Li, C. N. Moorefield, P.-S. Wang, C. D. Shreiner, G. R. Newkome, Self-Assembly, Disassembly, and Reassembly of Gold Nanorods Mediated by Bis(terpyridine)–Metal Connectivity. Chem. Eur. J. , 2010, 16 4164-4168.
52. A. Gole, C. J. Murphy, Azide-Derivatized Gold Nanorods: Functional Materials for "Click" Chemistry. Langmuir, 2008, 24, 266-272.
53. Y. Zhou, S.-X. Wang, K. Zhang, X.-Y. Jiang, Visual Detection of Copper(II) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angew. Chem. Int. Ed., 2008, 47, 7454-7456.
54. E A. Weitz, C. Lewandowski, E. D. Smolensky, M. Marjanska, V. C. Pierre, A Magnetoplasmonic Imaging Agent for Copper(I) with Dual Response by MRI and Dark Field Microscopy. ACS Nano, 2013, 7, 5842-5849.
55. K. Nwe, M. W. Brechbiel, Growing Applications of ''ClickChemistry'' for Bioconjugation in Contemporary Biomedical Research. Cancer Biother. Radiopharm., 2009, 24, 289-302.
56. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B 2000, 104, 9111-9117.
57. Y. Wu, P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc. , 2001, 123,
58. F. Kim, J. H. Song, P.d. Yang, Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc., 2002, 124, 14316-14317.
59. Y. Mizukoshi , K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, Y. Nagata, Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. J. Phys. Chem. B, 1997, 101, 7033-7037.
60. Y.-Ying , S.-S. Chang , C.-L. Lee , and C. R. Chris Wang Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997, 101, 6661-6664.
61. C. J. Murphy, N. R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater., 2002, 14, 80-82.
62. B. Nikoobakht, Mostafa A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater., 2003, 15, 1957-1962.
63. X.C. Ye, L.H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y.J. Kang, N. Engheta, C. R. Kagan, C. B. Murray, Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano, 2012, 6, 2804-2817.
64. N. R. Jana, L. Gearheart, C. J. Murphy, Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17, 6782-6786.
65. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L.F. Gou, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857-13870.
66. K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE, 14,
67. H. Harutyunyan, G. V. R. Quidant, L. Novotny, Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Phys. Rev. Lett., 2012, 108, 217403.
68. C.O. Kima, S.-Y. Hong, M. Kima, S.-M. Park, , J. W. Park, Modification of indium–tin oxide (ITO) glass with aziridine provides a surface of high amine density. J. Colloid. Interface Sci. , 2004, 277, 499-504.
69. P. Zijlstra, M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys., 2011, 74, 106401.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊