|
1. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev., 1957, 106, 874-881. 2. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, 1988, 111 3. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408, 131-314. 4. K. A.Willets, R. P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. , 2007, 58, 267-297. 5. E. Abbe, Arch. mikrosk. Anat. Entwichlungsmech., 1873, 9, 413-468. 6. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem., 2008, 1, 601-626. 7. H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, H. Xu, Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems. Nano Lett., 2008, 8, 2497-2502. 8. J. P. Camden , J. A. Dieringer , J. Zhao, R. P. Van Duyne Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Acc. Chem. Res., 2008, 41, 1653-1661. 9. T. Liebermann, W. Knoll, Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf., 2000, 171, 115-130. 10. E. Fort, S. Gresillon, Surface enhanced fluorescence. J. Phys. D: Appl. Phys. , 2008, 41, 013001. 11. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, C. Yan, Strong Polarization Dependence of Plasmon-Enhanced Fluorescence on Single Gold Nanorods. Nano Lett., 2009, 9, 3896-3903. 12. P. Biagioni, J-.S-. Huang, B. Hecht, Nanoantennas for visible and infrared radiation. Rep. Prog. Phys., 2012, 75, 024402. 13. L. Novotny, Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. , 2010, 78, 1199-1202. 14. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, Q.-Q. Wang, Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt. Lett., 2011, 36, 1542-1544. 15. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, B. Hecht, Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Lett., 2010, 10, 2105-2110. 16. U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev., 1961, 124, 1866-1878. 17. Andrey E. Miroshnichenko, Sergej Flach, and Yuri S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. , 2010, 82, 2257-2299. 18. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Lett., 2008, 8, 2171-2175. 19. B. Luk'yanchuk, H. Giessen, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 2010, 9, 707-715. 20. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano, 2009, 3, 643-652. 21. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett., 2008, 8, 3983-3988. 22. Y. Sonnefraud, N. Verellen, H.Sobhani, G. A.E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, Peter Nordlander, Stefan A. Maier, Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities. ACS Nano, 2010, 4, 1664-1670. 23. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, N. J. Halas, Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Lett., 2010, 10, 2694-2701. 24. O. Pena-Rodríguez, U. Pal, M. Campoy-Quiles, L. Rodríguez-Fernandez, M. Garriga, ,M. I. Alonso, Enhanced Fano Resonance in Asymmetrical Au:Ag Heterodimers. J. Phys. Chem. C, 2011, 115, 6410-614. 25. M. Abb, Y.Wang, P. Albella, C. H. de Groot, J. Aizpurua, Otto L. Muskens, Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano, 2012, 6, 6462-6470. 26. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas, Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano, 2010, 4, 819-832. 27. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, V. V. Moshchalkov, Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing. Nano Lett., 2011, 11, 391-397. 28. S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity. J. Phys. Chem. C 2011, 115, 24469-24477. 29. W. Cao, R. Singh, I. A. I Al-Naib, M.-X. He, A. J. Taylor, W.-L. Zhang, Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett., 2012, 37, 3366-3368. 30. A. E. Cetin, H. Altug, Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing. ACS Nano, 2012, 6, 9989-9995. 31. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11, 69-75. 32. A. A. Yanika, A. E. Cetina, M. Huang, A. Artara,S. H. Mousavic, A. Khanikaevc, J. H. Connord, G. Shvetsc, H. Altuga, Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA, 2011, 108, 11784-11789. 33. C. D. Hein, X.-M. Liu, D. Wang, Click Chemistry, A Powerful Tool for Pharmaceutical Sciences. Pharmaceutical Research, 2008, 25, 2216-2230. 34. P. Thirumurugan, D. Matosiuk, K. Jozwiak, Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev., 2013, 113, 4905-4979. 35. H. C. Kolb, M. G. Finn, K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021. 36. C. L. Cox, J. I. Tietz, K. Sokolowski, J. O. Melby, J. R. Doroghazi, D. A. Mitchell, Nucleophilic 1,4-Additions for Natural Product Discovery. ACS Chem. Biol., 2014, 9, 2014-2022. 37. M. C. Floros, A. L. Leão, S. S. Narine1, Vegetable Oil Derived Solvent, and Catalyst Free “Click Chemistry” Thermoplastic Polytriazoles. Biomed Res. Int., 2014, 2014, 792901. 38. G. London, K.-Y. Chen, G. T. Carroll, B. L. Feringa, Towards Dynamic Control of Wettability by Using Functionalized AltitudinalMolecular Motors on Solid Surfaces. Chem. Eur. J., 2013, 19, 10690-10697. 39. Huisgen, R., Centenary Lecture - 1,3-Dipolar Cycloadditions. Proc. Chem. Soc., 1961, 357-396. 40. https://en.wikipedia.org/wiki/Azide-alkyne_Huisgen_cycloaddition#cite_note-4, 41. C. W. Tornøe, C. Christensen, M. Meldal, Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem., 2002, 67, 3057-3064. 42. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599. 43. P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, V. V. Fokin, Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(i)-Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43, 3928-3932. 44. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc., 2005, 127, 210-216. 45. J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793-16797. 46. W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, J.-S. Huang, The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano, 2014, 8, 9053-9062. 47. P. Pramod, K. G. Thomas, Plasmon Coupling in Dimers of Au Nanorods. Adv. Mater., 2008, 20, 4300-4305. 48. H. Yao, C. Yi, C.-H. Tzang, J. Zhu, M. Yang, DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures. Nanotechnology, 2007, 18, 015102. 49. R. Jin, G. Wu, Z. Li, C. A. Mirkin, G. C. Schatz, What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc., 2003, 125, 1643-1654. 50. Z. Chen, X. Lan, Y.-C. Chiu, X. Lu, W. Ni, H. Gao, Q. Wang, Strong Chiroptical Activities in Gold Nanorod Dimers Assembled Using DNA Origami Templates. ACS Phtonics, 2015, 2, 392-397. 51. Y.-T. Chan, S. Li, C. N. Moorefield, P.-S. Wang, C. D. Shreiner, G. R. Newkome, Self-Assembly, Disassembly, and Reassembly of Gold Nanorods Mediated by Bis(terpyridine)–Metal Connectivity. Chem. Eur. J. , 2010, 16 4164-4168. 52. A. Gole, C. J. Murphy, Azide-Derivatized Gold Nanorods: Functional Materials for "Click" Chemistry. Langmuir, 2008, 24, 266-272. 53. Y. Zhou, S.-X. Wang, K. Zhang, X.-Y. Jiang, Visual Detection of Copper(II) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angew. Chem. Int. Ed., 2008, 47, 7454-7456. 54. E A. Weitz, C. Lewandowski, E. D. Smolensky, M. Marjanska, V. C. Pierre, A Magnetoplasmonic Imaging Agent for Copper(I) with Dual Response by MRI and Dark Field Microscopy. ACS Nano, 2013, 7, 5842-5849. 55. K. Nwe, M. W. Brechbiel, Growing Applications of ''ClickChemistry'' for Bioconjugation in Contemporary Biomedical Research. Cancer Biother. Radiopharm., 2009, 24, 289-302. 56. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem. B 2000, 104, 9111-9117. 57. Y. Wu, P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc. , 2001, 123, 58. F. Kim, J. H. Song, P.d. Yang, Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc., 2002, 124, 14316-14317. 59. Y. Mizukoshi , K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, Y. Nagata, Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. J. Phys. Chem. B, 1997, 101, 7033-7037. 60. Y.-Ying , S.-S. Chang , C.-L. Lee , and C. R. Chris Wang Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997, 101, 6661-6664. 61. C. J. Murphy, N. R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater., 2002, 14, 80-82. 62. B. Nikoobakht, Mostafa A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater., 2003, 15, 1957-1962. 63. X.C. Ye, L.H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y.J. Kang, N. Engheta, C. R. Kagan, C. B. Murray, Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano, 2012, 6, 2804-2817. 64. N. R. Jana, L. Gearheart, C. J. Murphy, Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17, 6782-6786. 65. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L.F. Gou, S. E. Hunyadi, T. Li, Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857-13870. 66. K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE, 14, 67. H. Harutyunyan, G. V. R. Quidant, L. Novotny, Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Phys. Rev. Lett., 2012, 108, 217403. 68. C.O. Kima, S.-Y. Hong, M. Kima, S.-M. Park, , J. W. Park, Modification of indium–tin oxide (ITO) glass with aziridine provides a surface of high amine density. J. Colloid. Interface Sci. , 2004, 277, 499-504. 69. P. Zijlstra, M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys., 2011, 74, 106401.
|