|
(1) L. Delaey, R. Krishnan, H. Tas, and H. Warlimont., “Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 1 Structural and microstructural changes associated with the transformations,” Journal of Materials Science (1974), vol.9, pp. 1521-1535 (2) R. Krishnan, L. Delaey, H. Tas, and H. Warlimont,“Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 2 Macroscopic Mechanical-Behavior,” Journal of Materials Science (1974), vol.9, pp. 1536-1544. (3) H. Warlimont, L. Delaey, R. Krishnan, and H. Tas,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 3 Thermodynamics and Kinetics,” Journal of Materials Science (1974), vol.9, pp. 1545-1555. (4) 賴耿陽,“形狀記憶合金” 復漢出版社, Vol. 1, pp. 1-44, p.68 (1999) (5) P. Thamburaja, H. Pan, F.S. Chau., “Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet.” Acta Materialia Vol.53, (2005) pp. 3821–3831 (6) J. Perkins and R.O. Sponholz, “Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-AI Alloys” Metallurgical Transactions (1984), vol.15, pp. 313-321 (7) D. Dumme and C. Wayman,“Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features,” Metallurgical Transactions (1973), vol.4, pp. 147-152. (8) T. Schroeder and C. Wayman,“The two-way shape memory effect and other training phenomena in Cu- Zn single-crystals,” Scripta Metallurgica (1977), vol.11, pp. 225-230. (9) M. Nishida, T. Honma, “All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging.” Scripta Metallurgica (1984), vol.18, pp. 1293–1298 (10) Nishida, M. and T. Honma, “Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni.” Scripta Metallurgica,(1984), Vol.18 No.11, pp. 1299-1302 (11) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys.” Journal of Engineering Materials and Technology-Transactions of the Asme, (2002), Vol.124, No.4, pp. 397-401. (12) Wayman, C.M., Proc. ICOMAT-89,Sydney, Australia, (1989), p. 519 (13) Otsuka, K., in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, PA. (USA), (1981), p. 1276. (14) Otsuka, K. and K. Shimizu, “Pseudoelasticity”, Metals Forum, (1981). Vol.4, No.3, pp. 142-152. (15) Otsuka, K. and a.C.M. Wayman, “Reviews on the Deformation Behavior of Materials”, (P. Feltham ed.), Israel, (1977), p. 81. (16) Honma, T., Proc. Int. Conf. on Martensitic Transformations (ICOMAT-86), (1987) p. 709. (17) K. Otsuka and K.Shimizu, International Metals Reviews.,Vol.31, (1986), p. 93 (18) Vol.3 “Alloy Phase Diagrams” ASM Handbook, ASM international. (19) K. Otsuka, C. Wayman, “Shape Memory Materials”, Cambridge University Press, Cambridge, (1998), p. 49. (20) C.M. Jackson, H.J. Wanger, and R.J. Wasilewski, “55-NITIONL Report”. NASA-SP5110, (1972). (21) K. Ostuka, S. Sawamura, and a.K. Shimizu, Phys. Stat. Sol., 5, (1971), p. 457. (22) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys”, Journal of Engineering Materials and Technology-Transactions of the Asme, (2002).Vol.124, No.4, pp. 397-401. (23) Liu, Y., et al., “Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet.”, Acta materialia, (1999). Vol.47, No.2, pp. 645-660. (24) Liu, Y.O. and P.G. Mccormick, “Factors Influencing the Development of 2-Way Shape Memory in NiTi.”, Acta Metallurgica Et Materialia, (1990). Vol.38, No.7, pp. 1321-1326. (25) Wang, Z.G., et al., “Design of TiNi alloy two-way shape memory coil extension spring.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (2003). Vol.345,(1-2), pp. 249-254. (26) Prader, P. and A.C. Kneissl, “Deformation behaviour and two-way shape memory effect of NiTi alloys.”, Zeitschrift Fur Metallkunde, (1997). Vol.88, No.5, pp. 410-415. (27) Scherngell, H. and A.C. Kneissl, Generation, development and degradation of the intrinsic two-way shape memory effect in different alloy systems. Acta Materialia, 2002. Vol.50, No.2, pp. 327-341. (28) Scherngell, H. and A.C. Kneissl, “Influence of the microstructure on the stability of the intrinsic two-way shape memory effect.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (1999). Vol.273, pp. 400-403. (29) Hebda, D.A. and S.R. White, “Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior.”, Smart Materials & Structures, (1995). Vol.4, No.4, pp. 298-304. (30) Perkins, J. and R.O. Sponholz, “Stress-Induced Martensitic-Transformation Cycling and 2-Way Shape Memory Training in Cu-Zn-Al Alloys.”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1984). Vol.15, No.2, pp. 313-321. (31) Schroeder, T.A. and C.M. Wayman, “2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals.”, Scripta Metallurgica, (1977). Vol.11, No.3, pp. 225-230. (32) M.M. Reyhani, P.G.M., Proc. ICO-MAT-86, Japan Inst. Metals (1986), p. 896. (33) Hong-Sheng Ding, Jung-Moo Lee,, Bup-Ro Lee, Suk-Bong Kang, Tae-Hyun Nam, “Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer”, Materials Science and Engineering A. vol. 408 (2005), pp. 182–189 (34) 馬濟民,鈦鑄錠和鍛造,冶金工業出版社 ,2012。 (35) Pavel Novák, Lucie Mejzlíková, Alena Michalcová, Jaroslav Capek, Premysl Beran, Dalibor Vojtech, “Effect of SHS conditions on microstructure of NiTi shape memory alloy”, Intermetallics, Vol.42, (2013), pp. 85-91 (36) Pavel Novak, Petr Pokorný, Vladimír Vojtech, Anna Knaislova, Andrea Skolakova, Jaroslav Capek, Miroslav Karlík, Jaromír Kopecek, “Formation of NiTi intermetallics during reactive sintering at 500-650°C”, Materials Chemistry and Physics, Vol.155, (2015), pp.113-121 (37) T. C. Li, Y. B. Qui, J. T. Liu, F. T. Wang, M. Zhu, D. Z. Yang, J. Material Science. vol. 11, (1992), p. 845 (38) 張小明, 殷為宏, 郭繼紅, 粉末冶金技術,13(2), (1995), p. 121 (39) M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Sto¨ver, “Powder metallurgical fabrication processes for NiTi shape memory alloy parts”, Materials Science and Engineering A, vol. 337, (2002), pp. 254-263 (40) Zuhair A. Munir, Umberto Anselmi-Tamburini,” Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion” Material Science Report., Vol.3, (1989), pp. 277-365 (41) Hitoshi Matsumoto, Ken-Ichi Kondo, Shoso Dohi and Akira sawaoka, “Shock compaction of NiTi alloy powder”, Journal of Material Science, Vol.22, (1987), pp.581-586 (42) Binh-Yun LI, Li-Jian Rong, Yi-Yi LI, and V.E. Gjunter, “An Investigation of the Synthesis of Ti-50 At. Pct Ni Alloys through Combustion Synthesis and Conventional Powder Sintering”, Metallurgical and Materials Transactions A, Vol.31, (1998), pp. 1867-1871 (43) V. I. Itin, V. E. Gjunter, S. A. Shabalovskays, R. L. C. Sachdeva, “Mechanical Properties and Shape Memory of Porous Nitinol”, Materials Characterization, Vol. 32, (1994), pp. 179–187 (44) Sakae Saito, Takashi Wachi and Shuji Hanada,” A new fabrication process of TiNi shape memory wire” Material Science Engineering A, Vol.161, (1993), pp.91-96 (45) W. C. Chiou and C. T. Hu, “A simple method for producing fully dense Ni3Al by reactive sintering”, Scripta Metallurgica et Materialia, Vol.31, No.9, (1994), pp. 1215-1220 (46) D. Tomus, K. Tsuchiya, M. Inuzuka, M. Sasaki, D. Imai, T. Ohmori, M. Umemoto, “Fabrication of shape memory TiNi foils via Ti/Ni ultrafine laminates”, Scripta Materialia, Vol. 48, (2003), pp. 489–494 (47) N. Igata, N. Urahashi, M. Sasaki, Y. Kogo, “Internal friction of Ni–Ti and Ni–Ti–Cu plates produced by lamination process”, Materials Science and Engineering A, (2004), Vol.379, pp. 560–563 (48) Ling, H.C. and R. Kaplow, “Phase-Transitions and Shape Memory in NiTi”., Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1980). Vol.11, pp. 77-83. (49) M. Matsumoto and T. Honma, Proc. First JIM Inst. Symp. on New Aspects of Martensitic Transformation, Japan Institute of Metals, Sendai (1976). p. 199. (50) V.N. Khachin, et al., Phys. Met. Metallogr. (Engl. Trans.), Vol. 46, (1978), p. 49. (51) Sandrock, G.D., A.J. Perkins, and R.F. Hehemann, “Premartensitic Instability in near-Equiatomic TiNi”, Metallurgical Transactions, (1971), Vol.2, p. 2769 (52) Wang, F.E., et al., “Irreversible Critical Range in TiNi Transition”, Journal of Applied Physics, (1968), Vol.39, p. 2166 (53) Melton, K.N. and O. Mercier, “Fatigue of Niti Thermoelastic Martensites”, Acta Metallurgica, Vol.27, (1979), pp. 137-144. (54) Wang, F.E., W.J. Buehler, and S.J. Pickart, “Crystal Structure and a Unique Martensitic Transition of TiNi”, Journal of Applied Physics, Vol.36, No.10, (1965), p. 3232 (55) Ling, H.C. and R. Kaplow, “Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol.12, No.12, (1981), pp. 2101-2111. (56) Hwang, C., et al., “Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase”. Philosophical Magazine A, Vol.47, (1983), pp. 9-30. (57) Sato, M., A. Ishida, and S. Miyazaki, “Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at% Ni”, Thin Solid Films, Vol.315,No.1-2, (1998). pp. 305-309. (58) Redeker, T., et al., “Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi)”, Abstracts of Papers of the American Chemical Society, Vol.216, (1998), p.188 (59) Hanlon, J.E., S.R. Butler, and Wasilews.Rj, “Effect of Martensitic Transformation on Electrical and Magnetic Properties of NiTi”, Transactions of the Metallurgical Society of Aime, (1967), Vol.239, No.9, p.1323 (60) Salamon, M.B., M.E. Meichle, and C.M. Wayman, “Premartensitic Phases of Ti50Ni47Fe3”, Physical Review B, Vol. 31, No.11, (1985), pp. 7306-7315. (61) Saburi, T., T. Tatsumi, and S. Nenno, “Effects of Heat-Treatment on Mechanical-Behavior of Ti-Ni Alloys”, Journal De Physique, (1982).Vol.43, pp. 261-266. (62) Airoldi, G., G. Bellini, and C. Difrancesco, “Transformation Cycling in Niti Alloys”, Journal of Physics F-Metal Physics, (1984), Vol.14, No.8, pp.1983-1987. (63) Tadaki, T., Y. Nakata, and K. Shimizu, “Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy”, Transactions of the Japan Institute of Metals, (1987), Vol.28, No.11, pp. 883-890. (64) Miyazaki, S., Y. Igo, and K. Otsuka, “Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys”, Acta Metallurgica, (1986), Vol.34, No.10, pp. 2045-2051. (65) Dautovic.Dp, et al., “Calorimetric Study of a Diffusionless Phase Transition in TiNi”, Journal of Applied Physics, (1966), Vol.37, No.6, p. 2513 (66) M. Igharo, J. V. Wood,” Properties of Equiatomic TiNi Alloy Produced by Rapid Solidification”, Materials Science and Engineering, (1988), Vol.98, pp. 443-447 (67) M. Igharo and J. V. Wood, ”Compaction and Sintering Phenomena in Titanium—Nickel Shape Memory Alloys” Powder Metallurgy, Vol.28, No.3 (1985), p.131 (68) Handbook of Chemistry and Physics 58th edition (69) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1-6 (70) Handbook of Chemistry and Physics 58th edition (71) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1 to 6 (72) H. C. Lin, S. K. Wu and J. C. Lin, The martensitic transformation in Ti-rich TiNi shape memory alloys “, Materials Chemistry and Physics, Vol.37, (1994), pp. 184-190 (73) A. Ahadi and E. Rezaei, “Microstructure and Phase Transformation Behavior of a Stress-Assisted Heat-Treated Ti-Rich NiTi Shape Memory Alloy”, ASM International, Vol.21, (2012), pp. 1806–1812 (74) 林秀芬, “多孔性TiNi形狀記憶合金”, 國立清華大學碩士論文, (2002), 附錄 (75) http://www.techmaxasia.com/articles/detail/1196063383 (TechMax Technical Co., Ltd., Nov. 2003). (76) http://www.microimage.com.cn/uploadfile/xwjs/uploadfile/200812/20081231085154610.pdf (77) R. A. SWALIN and A. MARTIN, Trans. AIME Vol.206, (1956), p.567. (78) S. B. JUNG, T. YAMANE, Y. MINAMINO, K. HIRAO, H. ARAKI, S. SAJI, “Interdiffusion and its size effect in nickel solid solutions of Ni-Co, Ni-Cr and Ni-Ti systems” , Journal of Materials Science Letters, Vol.11, (1992), pp. 1333-1337 (79) Tokujiro Yamamoto, Hiroyuki Kato, Yoshihiro Murakami, Hisamichi Kimura, Akihisa Inoue, “Martensitic transformation and microstructure of Ti-rich Ti–Ni gas-atomized powders”, Acta Materialia, Vol.56, (2008), pp. 5927–5937 (80) Chung, C.Y., C.L. Chu, and S.D. Wang, “Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis.”, Materials Letters, Vol. 58, No.11, (2004), pp. 1683-1686. (81) Urbina, C., et al., “Quantitative XRD analysis of the evolution of the TiNi phase transformation behaviour in relation to thermal treatments.”, Intermetallics, Vol.18, No.8, pp. 1632-1641. (82) H.F. Lbpez, A. Salinas-Rodriguez, and J.L. Rodriguez-Galicia, “Microstructural aspects of precipitation and martensitic transformation in a Ti-rich Ni-Ti alloy”, Scripta Materialia, Vol.34, No.4, pp.659-664, (1996) (83) Hyo-jung Moon, Su-jin Chun, Yinong Liu, Hong Yang, Yeon-wook Kim, Tae-hyun Nam, “Effect of alloy composition on the B2–R transformation in rapidly solidified Ti–Ni alloys”, Journal of Alloys and Compounds, Vol.577, Suppl.1, (2013), pp. S259–S264 (84) Shuilin Wu, C.Y. Chung, Xiangmei Liu, J.P.Y. Ho,C.L. Chu,Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, “Pore formation mechanism and characterization of porous NiTi shape memory alloys synthesized by capsule-free hot isostatic pressing”, Acta Materialia, Vol. 55, (2007), pp. 3437–3451 (85) Gang Chen, Klaus-Dieter Liss, Peng Cao, “In situ observation and neutron diffraction of NiTi powder sintering”, Acta Materialia, Vol. 67, (2014), pp. 32–44
|