|
References 1. J.M. Tarascon, Key challenges in future Li-battery research, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 368 (2010) 3227-3241. 2. F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, Advanced materials, 23 (2011) 1695-1715. 3. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264. 4. C.M. Hayner, X. Zhao, H.H. Kung, Materials for rechargeable lithium-ion batteries, Annual review of chemical and biomolecular engineering, 3 (2012) 445-471. 5. Lithium Ion Rechargeable Batteries, Kazunori Ozawa, Willey-Vch, 2009, p.11 6. M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens, R. Marassi, High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose, Journal of Power Sources, 196 (2011) 9665-9671. 7. Y.-S. Park, E.-S. Oh, S.-M. Lee, Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries, Journal of Power Sources, 248 (2014) 1191-1196. 8. E. Pohjalainen, S. Räsänen, M. Jokinen, K. Yliniemi, D.A. Worsley, J. Kuusivaara, J. Juurikivi, R. Ekqvist, T. Kallio, M. Karppinen, Water soluble binder for fabrication of Li4Ti5O12 electrodes, Journal of Power Sources, 226 (2013) 134-139. 9. J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries†, Chemistry of Materials, 22 (2010) 587-603. 10. Y. Liu, L. Chen, Study on the electrochemical performance of LiNi0.5Mn1.5O4 with different precursor, Ionics, 18 (2012) 649-653. 11. G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205 (2012) 385-393. 12. M.S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, 104 (2004) 4271-4302. 13. J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries, Materials, 6 (2013) 156-183. 14. M. Wakihara and O. Yamamoto, Lithium Ion Batteries:Fundamentals and Performance, Wiley-VCH. (1998) 15. R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, 192 (2015) 3-25. 16. A.J. Smith, H.M. Dahn, J.C. Burns, J.R. Dahn, Long-Term Low-Rate Cycling of LiCoO2∕Graphite Li-Ion Cells at 55°C, Journal of The Electrochemical Society, 159 (2012) A705. 17. Y. Kobayashi, H. Miyashiro, K. Kumai, K. Takei, T. Iwahori, I. Uchida, Precise Electrochemical Calorimetry of LiCoO2/Graphite Lithium-Ion Cell, Journal of The Electrochemical Society, 149 (2002) A978. 18. B. Xu, D. Qian, Z. Wang, Y.S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 73 (2012) 51-65. 19. G.B. Zhong, Y.Y. Wang, Z.C. Zhang, C.H. Chen, Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4, Electrochimica Acta, 56 (2011) 6554-6561. 20. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material, Journal of Power Sources, 195 (2010) 5442-5451. 21. J.-H. Kim, N.P.W. Pieczonka, Z. Li, Y. Wu, S. Harris, B.R. Powell, Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries, Electrochimica Acta, 90 (2013) 556-562. 22. J.C. Hunter, Preparation of a new crystal form of manganese dioxide: λ-MnO2, Journal of Solid State Chemistry, 39 (1981) 142-147. 23. N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 15947-15957. 24. X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism, Electrochimica Acta, 54 (2009) 7471-7475. 25. http://www.1688.com/ 26. M. Wakihara, Recent developments in lithium ion batteries, Materials Science and Engineering: R: Reports, 33 (2001) 109-134. 27. M.S. Whittingham, The Role of Ternary Phases in Cathode Reactions, Journal of The Electrochemical Society, 123 (1976) 315. 28. B. Di Pietro, M. Patriarca, B. Scrosati, On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries, Journal of Power Sources, 8 (1982) 289-299. 29. C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2 (2013) 132-154. 30. A. Kraytsberg, Y. Ein-Eli, Higher, Stronger, Better…A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries, Advanced Energy Materials, 2 (2012) 922-939. 31. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochimica Acta, 38 (1993) 1159-1167. 32. J. Morales, C. Pérez-Vicente, J.L. Tirado, Cation distribution and chemical deintercalation of Li1-xNi1+xO2, Materials Research Bulletin, 25 (1990) 623-630. 33. S. Venkatraman, Y. Shin, A. Manthiram, Phase Relationships and Structural and Chemical Stabilities of Charged Li1−xCoO2−δ and Li1−xNi0.85Co0.15O2−δ Cathodes, Electrochemical and Solid-State Letters, 6 (2003) A9. 34. A.K. Padhi, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, 144 (1997) 1188. 35. N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, Electroactivity of natural and synthetic triphylite, Journal of Power Sources, 97-98 (2001) 503-507. 36. J.-K. Kim, G. Cheruvally, J.-W. Choi, J.-U. Kim, J.-H. Ahn, G.-B. Cho, K.-W. Kim, H.-J. Ahn, Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material, Journal of Power Sources, 166 (2007) 211-218. 37. J.M. Tarascon, D. Guyomard, The Li1+xMn2O4/C rocking-chair system: a review, Electrochimica Acta, 38 (1993) 1221-1231. 38. R.J. Gummow, A. de Kock, M.M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, 69 (1994) 59-67. 39. M.M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry, 25 (1997) 1-71. 40. A. Caballero, M. Cruz, L. Hernán, M. Melero, J. Morales, E.R.g. Castellón, Oxygen Deficiency as the Origin of the Disparate Behavior of LiM0.5Mn1.5O4 (M = Ni, Cu) Nanospinels in Lithium Cells, Journal of The Electrochemical Society, 152 (2005) A552. 41. T. Ohzuku, S. Takeda, M. Iwanaga, Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries, Journal of Power Sources, 81-82 (1999) 90-94. 42. Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H.J. Kim, S. Choi, The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries, Journal of Power Sources, 146 (2005) 664-669. 43. H.M. Wu, J.P. Tu, X.T. Chen, D.Q. Shi, X.B. Zhao, G.S. Cao, Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x=0.1–0.5) powders by spray-drying method, Electrochimica Acta, 51 (2006) 4148-4152. 44. D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.-J. Kim, S. Choi, Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells, Journal of Power Sources, 162 (2006) 780-789. 45. J.H. Kim, S.T. Myung, Y.K. Sun, Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery, Electrochimica Acta, 49 (2004) 219-227. 46. G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, Journal of Solid State Electrochemistry, 14 (2010) 2191-2202. 47. P. Axmann, C. Stinner, Secondary Batteries – Lithium Rechargeable Systems – Lithium-Ion. 48. S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, High voltage spinel oxides for Li-ion batteries: From the material research to the application, Journal of Power Sources, 189 (2009) 344-352. 49. J. Shu, T.-F. Yi, M. Shui, Y. Wang, R.-S. Zhu, X.-F. Chu, F. Huang, D. Xu, L. Hou, Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries, Computational Materials Science, 50 (2010) 776-779. 50. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, Journal of Magnetism and Magnetic Materials, 309 (2007) 100-105. 51. X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance, Journal of Alloys and Compounds, 509 (2011) 3623-3626. 52. S.-H. Park, S.-W. Oh, C.-S. Yoon, S.-T. Myung, Y.-K. Sun, LiNi0.5Mn1.5O4 Showing Reversible Phase Transition on 3 V Region, Electrochemical and Solid-State Letters, 8 (2005) A163. 53. J.H. Kim, C.S. Yoon, S.T. Myung, J. Prakash, Y.K. Sun, Phase Transitions in Li1−δNi0.5Mn1.5O4 during Cycling at 5 V, Electrochemical and Solid-State Letters, 7 (2004) A216. 54. M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology, Chemistry of Materials, 18 (2006) 3585-3592. 55. J. Liu, A. Manthiram, Kinetics Study of the 5 V Spinel Cathode LiNi0.5Mn1.5O4 Before and After Surface Modifications, Journal of The Electrochemical Society, 156 (2009) A833. 56. Y. Sun, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348. 57. H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries, Journal of Power Sources, 195 (2010) 2909-2913. 58. T.-F. Yi, Y. Xie, M.-F. Ye, L.-J. Jiang, R.-S. Zhu, Y.-R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries, Ionics, 17 (2011) 383-389. 59. G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries, Journal of Power Sources, 205 (2012) 385-393. 60. L. Zhou, D. Zhao, X. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries, Angewandte Chemie, 51 (2012) 239-241. 61. G. Zhao, Y. Lin, T. Zhou, Y. Lin, Y. Huang, Z. Huang, Enhanced rate and high-temperature performance of La0.7Sr0.3MnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources, 215 (2012) 63-68. 62. Y. Lee, J. Mun, D.-W. Kim, J.K. Lee, W. Choi, Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol–gel method for lithium ion batteries, Electrochimica Acta, 115 (2014) 326-331. 63. J.S. Chae, S.-B. Yoon, W.-S. Yoon, Y.-M. Kang, S.-M. Park, J.-W. Lee, K.C. Roh, Enhanced high-temperature cycling of Li2O–2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries, Journal of Alloys and Compounds, 601 (2014) 217-222. 64. W.H. Jang, M.C. Kim, S.N. Lee, J.Y. Ahn, V. Aravindan, Y.S. Lee, Enhanced elevated temperature performance of LiFePO4 modified spinel LiNi0.5Mn1.5O4 cathode, Journal of Alloys and Compounds, 612 (2014) 51-55. 65. J.-H. Cho, J.-H. Park, M.-H. Lee, H.-K. Song, S.-Y. Lee, A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case, Energy & Environmental Science, 5 (2012) 7124. 66. N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J.-Y. Son, H. Oji, Y. Katayama, T. Miura, S. Komaba, Graphite-Silicon-Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li-Ion Batteries, Advanced Energy Materials, 1 (2011) 759-765. 67. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, K. Konno, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, The Journal of Physical Chemistry C, 115 (2011) 13487-13495. 68. Z. Zhang, T. Zeng, Y. Lai, M. Jia, J. Li, A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries, Journal of Power Sources, 247 (2014) 1-8. 69. Z. Zhang, T. Zeng, C. Qu, H. Lu, M. Jia, Y. Lai, J. Li, Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochimica Acta, 80 (2012) 440-444. 70. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib, LiFePO4 water-soluble binder electrode for Li-ion batteries, Journal of Power Sources, 163 (2007) 1047-1052. 71. A.D. Pasquier, Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries, Journal of The Electrochemical Society, 145 (1998) 472. 72. V.H. Nguyen, W.L. Wang, E.M. Jin, H.-B. Gu, Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode, Applied Surface Science, 282 (2013) 444-449. 73. S.S. Zhang, K. Xu, T.R. Jow, Evaluation on a water-based binder for the graphite anode of Li-ion batteries, Journal of Power Sources, 138 (2004) 226-231. 74. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334 (2011) 75-79. 75. J. Xu, S.-L. Chou, Q.-f. Gu, H.-K. Liu, S.-X. Dou, The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries, Journal of Power Sources, 225 (2013) 172-178. 76. J.-H. Lee, U. Paik, V.A. Hackley, Y.-M. Choi, Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries, Journal of The Electrochemical Society, 152 (2005) A1763. 77. J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. Ridgway, J.Q. Wang, V.S. Battaglia, A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells, Journal of Power Sources, 196 (2011) 7707-7714. 78. S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou, Rapid Synthesis of Li4Ti5O12Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery, The Journal of Physical Chemistry C, 115 (2011) 16220-16227. 79. J. Li, R.B. Lewis, J.R. Dahn, Sodium Carboxymethyl Cellulose, Electrochemical and Solid-State Letters, 10 (2007) A17. 80. N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, M. Winter, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochemical and Solid-State Letters, 11 (2008) A76. 81. Z. Wang, N. Dupré, A.-C. Gaillot, B. Lestriez, J.-F. Martin, L. Daniel, S. Patoux, D. Guyomard, CMC as a binder in LiNi0.4Mn1.6O4 5V cathodes and their electrochemical performance for Li-ion batteries, Electrochimica Acta, 62 (2012) 77-83. 82. http://www.twwiki.com/ 83. Y.-R. Jhan, C.-Y. Lin, J.-G. Duh, Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability, Materials Letters, 65 (2011) 2502-2505. 84. M. Kunduraci, G.G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes, Electrochimica Acta, 53 (2008) 4193-4199. 85. H. Rong, M. Xu, L. Xing, W. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP), Journal of Power Sources, 261 (2014) 148-155. 86. Y. Lin, Y. Yang, R. Yu, H. Lai, Z. Huang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with superconducting YBa2Cu3O7, Journal of Power Sources, 259 (2014) 188-194. 87. K. Kim, Y. Kim, E.-S. Oh, H.-C. Shin, The role of fluoride in protecting LiNi0.5Mn1.5O4 electrodes against high temperature degradation, Electrochimica Acta, 114 (2013) 387-393. 88. Chai MN, Isa MIN., The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte. Journal of Crystallization Process and Technology. 2013;03:1-4. 89. Y. Peng, P. Wu, A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process, Polymer, 45 (2004) 5295-5299. 90. Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation, Polymer Testing, 23 (2004) 791-796. 91. C. Fongy, A.C. Gaillot, S. Jouanneau, D. Guyomard, B. Lestriez, Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO[sub 4] Composite Electrodes, Journal of The Electrochemical Society, 157 (2010) A885. 92. S. Komaba, N. Yabuuchi, T. Ozeki, K. Okushi, H. Yui, K. Konno, Y. Katayama, T. Miura, Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media, Journal of Power Sources, 195 (2010) 6069-6074. 93. J.S. Bridel, T. Azaïs, M. Morcrette, J.M. Tarascon, D. Larcher, Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries†, Chemistry of Materials, 22 (2010) 1229-1241.
|