[1] R. C. Chu, "The Perpetual Challenges of Electronics Cooling Technology for Computer Product Applications – from Laptop to Supercomputer," presented at the National Taiwan University Presentation, (2003).
[2] J. Markoff, "Intel's Big Shift After Hitting Technical Wall", New York Times, May 17 (2004)
[3] 劉君愷, "3D IC散熱及可靠度設計技術 (Thermal and Reliability Issues for 3D IC)", 工業材料雜誌, 274 (2009) 99-107.[4] R. Mahajan, C. P. Chiu, and G. Chrysler, "Cooling a Microprocessor Chip," in Proceedings of the IEEE,(2006). 1476-1486.
[5] K. Banerjee, S. C. Lin, and V. Wason, "Leakage and Variation aware Thermal Management of Nanometer Scale ICs," in Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, CA,(2004).
[6] 黃振東, "淺談LED散熱材料及元件 (Brief Introduction of LED Thermal Management and Components)", 工業材料雜誌, 281 (2010) 73-83.[7] R. Bollina and S. Knippscheer. "Advanced Metal Diamond Composites – Love and Heat Relationship", Electronics Cooling Magazine (2008)
[8] Z. Carl, "Thermal Materials Solve Power Electronics Challenges", Power Electronics Technology, 32 (2006) 40-47.
[9] D. M. Jacobson and S. P. S. Sangha, "Novel Low Expansion Packages for Elecronics", The GEC Journal of Technology, 14 (1997) 48-52.
[10] J. F. Silvain, Y. L. Petitcorps, E. Sellier, P. Bonniau, and V. Heim, "Elastic moduli, thermal expansion and microstructure of copper-matrix composite reinforced by continuous graphite fibres", Composites, 25 (1994) 570-574.
[11] D. Coupard, J. Goni, and J. F. Sylvain, "Fabrication and squeeze casting infiltration of graphite/alumina preforms", Journal of Materials Science, 34 (1999) 5307-5313.
[12] I. N. Orbulov1, Á. Németh1, and J. Dobránszky, "Composite Production by Pressure Infiltration", Materials Science Forum, 589 (2008) 137-142.
[13] 馮慶芬, 粉末冶金學, 新文京開發出版有限公司, (2002) 285-389.
[14] G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, "Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder", Science and Technology of Advanced Materials, 8 (2007) 644-654.
[15] http://www.fct-systeme.de/en/content/Spark_Plasma_Sintertechnologie/~nm.19~nc.40/SPS-Technology.html
[16] R. M. German, K. F. Hens, and J. L. Johnson, "Power-Metallurgy processing of Thermal Management Materials for Microelectronic Applications", International Journal of Powder Metallurgy, 30 (1994) 205-215.
[17] A. G. Every, Y. Tzou, D. P. H. HASSELMAN, and R. Raj, "The effect of particle size on the thermal conductivity of ZnS/diamond composites", Acta Metallurgica et Materialia, 40 (1992) 123-129.
[18] D. P. H. Hasselman, K. Y. Donaldson, and A. L. Geiger, "Effect of reinforement particle-size on the thermal-conductivity of a particulate-silicon carbide-reinfored aluminum matrix composite", Journal of the American Ceramic Society, 75 (1992) 3137-3140.
[19] L. Rayleigh. "On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of a Medium", Philosophical Magazine (1892) 481-502.
[20] J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University, (1873) 365.
[21] D. P. H. Hasselman and L. F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance", Journal of Composite Materials, 21 (1987) 508-515.
[22] Z. Tan, Z. Li, D.-B. Xiong, G. Fan, G. Ji, and D. Zhang, "A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites", Materials and Design, 55 (2014) 257-262.
[23] R. Tavangar, J. M. Molina, and L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast", Scripta Materialia, 56 (2007) 357-360.
[24] R. M. German, "A Modal of the Thermal-Properties of Liquid-Phase Sintered Composite", Metallurgical Transactions A, 24A (1993) 1745-1752.
[25] Y. Benveniste, "Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case", Journal of Applied Physics, 61 (1987) 2840-2843.
[26] J. C. Y. Koh and A. Fortini, "Prediction of thermal conductivity and electrical resistivity of porous metallic materials", International Journal of Heat and Mass Transfer, 16 (1973) 2013-2022.
[27] K. Chu, C. C. Jia, X. B. Liang, H. Chen, W. J. Gao, and H. Guo, "Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance", Materials & Design, 30 (2009) 4311-4316.
[28] J. Flaquer, A. Rios, A. Martin-Meizoso, S. Nogales, and H. Bohm, "Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites", Computational Materials Science, 41 (2007) 156-163.
[29] A. A. Fahmy and A. N. Ragai, "Thermal-Expansion Behavior of Two-Phase Solids", Journal of Applied Physics, 41 (1970) 5108-5111.
[30] E. H. Kerner, "The Elastic and Thermo-Elastic Properties of Composite Media", Proceeding of The Physical Society of London (B), 68 (1956) 808-813.
[31] P. S. Turner, "Thermal-Expansion Stresses in Reinforced Plastics", Journal of Research of the National Bureau of Standards, 37 (1946) 239-250.
[32] K. Chu, C. C. Jia, H. Guo, and W. S. Li, "On the thermal conductivity of Cu-Zr/diamond composites", Materials & Design, 45 (2013) 36-42.
[33] S. Barzilai, N. Argaman, N. Froumin, D. Fuks, and N. Frage, "First-principles modeling of metal layer adsorption on CaF2(111)", Surface Science, 602 (2008) 1517-1524.
[34] N. Eustathopoulus, M. G. Nicolas, and B. Drevet, "Wettability at High Temperatures", Pergamon Materials Series 3, (1999) 317-338.
[35] S. B. Ren, X. Y. Shen, C. Y. Guo, N. Liu, J. B. Zang, X. B. He, et al., "Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy", Composites Science and Technology, 71 (2001) 1550-1555.
[36] K. Nogi, Y. Okada, K. Ogino, and N. Iwamoto, "Wettability of diamond by liquid pure metals", Materials transactions-JIM, 35 (1994) 156-160.
[37] K. Yoshida and H. Morigami, "Thermal properties of diamond/copper composite material", Microelectronics Reliability, 44 (2004) 303-308.
[38] E. A. Ekimov, N. V. Suetin, A. F. Popovich, and V. G. Ralchenko, "Thermal conductivity of diamond composites sintered under high pressures", Diamond and Related Materials, 17 (2008) 838-843.
[39] A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, "High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix", Journal of Materials Science, 46 (2011) 1424-1438.
[40] C. Xue and J. K. Yu, "Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface", Surface & Coatings Technology, 217 (2013) 46-50.
[41] P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, "Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity", Composites Science and Technology, 66 (2006) 2677-2685.
[42] H. Chen, C. C. Jia, and S. J. Li, "Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques", Journal of Materials Science, 47 (2012) 3367-3375.
[43] I. E. Monje, E. Louis, and J. M. Molina, "Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control", Composites Part a-Applied Science and Manufacturing, 48 (2013) 9-14.
[44] Z. Q. Tan, Z. Q. Li, G. L. Fan, Q. Guo, X. Z. Kai, G. Ji, et al., "Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer", Materials & Design, 47 (2013) 160-166.
[45] http://www.siliconfareast.com/TCT.htm
[46] "JEDEC Standard , Temperature cycling, No. 22-A104D", J. S. S. T. Assiociation, (2009).
[47] "Test Method Standard, Microcircuits, MIL-STD 883E", U. S. d. standard, (1996).
[48] R. Kempers, R. Frizzell, A. Lyons, and A. J. Robinson, "Development of a Metal Micro-Textured Thermal Interface Material," presented at the ASME 2009 InterPACK Conference, (2009).
[49] http://www.tglobal.com.tw/what-is-thermal-interface-material.php
[50] K. M. F. Shahil and A. A. Balandin, "Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials", Nano Letters, 12 (2012) 861-867.
[51] 陳文媛, 楊邦朝, and 胡永達, "熱界面材料及其應用", 成都電子科技大學微電子與固體電子學院碩士論文, (2009)
[52] R. S. Prasher, J. Shipley, S. Prstic, P. Koning, and J.-l. Wang, "Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials", Heat Transfer, 125 (2003) 1170-1177.
[53] R. Prasher and C.-P. Chiu, Ch13. "Materials for Advanced Packaging", (2009) 437-458.
[54] http://tech.get.com.tw/tech/tech-2.htm
[55] http://www.ewh.ieee.org/soc/cpmt/press/pressimage.html
[56] http://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=ae371f5b-98c5-4f44-9ccb-5ca9d36fc8db
[57] http://www.factdiamond.com
[58] http://www.artc.tw
[59] http://www.icprotect.com.tw/index.html
[60] 華星儀器有限公司
[61] http://www.himikatus.ru/art/phase-diagr1/C-Zr.php
[62] S. V. Kidalov and F. M. Shakhov, "Thermal Conductivity of Diamond Composites", 2 (2009) 2467-2395.
[63] 曾筱婷, "鑽石/銀-鈦基複合材料之熱性質與熱循環可靠性測試", 國立清華大學材料科學工程學系碩士論文, (2014)[64] D. Arias and J. P. Abrlata, "Cu-Zr (Copper-Zirconium) ", Bulletin of Alloy Phase Diagrams, 11 (1990) 452-459.
[65] "Thermal Diffusivity-Thermal Conductivity: Method, Technique, Applications", NETZCH Company Brochure, 2-11.
[66] "TA Instrument 2940 Thermomechanical Analyzer (TMA) Operating Instructions", TMA Instruction Manual, 4-11.
[67] 吳文成, "無電鍍鈷鎢磷薄膜應用於凸塊底層金屬化之擴散阻障層之研究", 國立交通大學材料科學與工程學系碩士論文, (2006)[68] 楊曼寧, "電子構裝鑽石/銅鋯複合材之製程及熱性質研究", 國立清華大學材料科學工程學系碩士論文, (2013)[69] W. Tong Hong, S. N. Paisner, L. Chang-Chi, S. Chen, and L. Yi-Shao, "Effect of surface roughness of silicon die and copper heat spreader on thermal performance of HFCBGA," in Microsystems, Packaging, Assembly and Circuits Technology Conference. 4th International,(2009). 581-584.
[70] http://www.lytron.com/Tools-and-Technical-Reference/Application-Notes/Reducing-Contact-Thermal-Resistance
[71] J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. N. Lee, Z. Metallkde, 87 (1996) 205-212.
[72] 林資烜, "電子構裝鑽石/錫-鈦複合材之製程及其熱性質", 國立清華大學碩士論文, (2013)[73] T. H. Wang, S. N. Paisner, C.-C. Lee, S. Chen, and Y.-S. Lai, "Effect of surface roughness of silicon die and copper heat spreader on thermal performance of HFCBGA", Microelectronics Reliability, 51 (2011) 1372–1376.