跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宜馨
研究生(外文):Yi-Hsin Wu
論文名稱:高導熱銅基鑽石複材製造及其基板接合
論文名稱(外文):Fabrication of High Thermal Conductive Diamond/Copper Composites and Their Joining with Substrates
指導教授:林樹均
指導教授(外文):Su-Jien Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:170
中文關鍵詞:銅基鑽石複合材料散熱材料熱傳導係數接合封裝
外文關鍵詞:Cu-based diamond compositeheat dissipationthermal conductivityelectronic package
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用無壓真空液相燒結製程製備銅基鑽石複材,並獲得高熱傳導係數且熱膨脹係數介於4-7 ppm/K的散熱複材,適當的平整處理之後與常見之電路基板進行接合。
在銅基材中添加單一活性元素鋯以提升潤濕性,並探討活性元素添加量對複材熱性質的影響。實驗中的複材熱傳導係數最高可達608 W/mK,其熱膨脹係數為6.4 ppm/K,介於電子元件的範圍內。本製程簡單、模具亦無損耗問題,在成本考量上極具優勢;利用添加銅鋯薄片的平整處理方式,可有效將複材的表面粗糙度減少一個數量級以上。而實驗中所設計的接合流程能夠有效將銅基複材與電路基板做出完整的接合封裝,並具有良好的拉伸強度。其封裝結構的熱性質表現最優異為銀膠接合氮化鋁組,其熱傳導值最高可達174 W/mK。銀膠組普遍熱性質良好、環氧膠組具有優異的拉伸強度,大於8.34 MPa;石墨膠組的拉伸強度約在1 MPa上下,可利用其來分析拉伸斷面上的膠分布,並推論接合中最脆弱的接合位置。氮化鋁與氧化鋁試片組由膠體中間斷開;而矽試片組屬於另一系統,由膠體與基板界面斷開。200 °C、150 次的高溫熱循環試驗中,發現銅鋯薄片添加可延後複材熱性質的劣化,其中環氧膠的氧化鋁組無衰退情形出現。而85 °C、1000 次的低溫熱循環試驗中,接合封裝的銀膠組可以通過測試,顯示其在實際使用條件下能有良好的可靠性,具有商業潛力。

Pressureless liquid phase sintering process was adopted for the fabrication of diamond/Cu composites. After suitable surface treatment these composites were joined with AlN, Si, and Al2O3 substrates by silver, graphite, and epoxy gels. The results show that adding minor active Zr element to enhance the wettability between Cu and diamond, the composites with a high thermal conductivity of 608 W/mK and CTE of 6.4 ppm/K can be achieved by using 300 μm diamonds with the volume fraction of 50 vol%. One order of surface roughness can be reduced through attaching a Cu/Zr flake to the composites before sintering. Packages joined by the silver gel have best performance, reaching 210 W/mK; those joined by epoxy shows excellent tensile strength, larger than 8.34 MPa. The tensile strength of graphite gel is around 1 MPa, providing a suitable condition to observe the distribution of the gel on the fracture surface. In thermal cycle tests carried out at 200 °C with 150 cycles, it was found that Cu/Zr flake addition can postpone the degradation of thermal properties of the composites, and the alumina package joined by epoxy gel has good reliability. While in thermal cycle tests carried out at 80 °C with 1000 cycles, packages joined by silver gel shows great reliability in normal circumstances, showing great commercial potential.
摘 要 I
Abstract II
誌 謝 III
目 錄 V
圖目錄 IX
表目錄 XVII
壹、 前言 1
貳、 文獻回顧 3
2.1. 散熱材料的重要性 3
2.2. 散熱材料的發展 5
2.2.1. 傳統散熱材料 6
2.2.2. 先進散熱材料 8
2.3. 鑽石金屬基複合材料 11
2.3.1. 常見製程 11
2.3.2. 理論性質 16
2.4. 影響金屬基鑽石複材熱性質的因素 22
2.4.1. 鑽石與金屬基材的界面潤濕問題 22
2.4.2. 鑽石粒徑與體積分率 24
2.4.3. 界面層厚度 25
2.4.4. 鑽石晶面差異 27
2.5. 熱循環測試 29
2.5.1. 熱循環測試之目的及原理 29
2.5.2. 熱循環測試的規範 30
2.6. 熱界面材料 32
2.6.1. 熱界面材料的分類與特性 32
2.6.2. 熱界面材料與接觸熱阻的關係 34
2.7. 電子封裝 38
2.7.1. 電子封裝層級 39
2.7.2. 常見電路基板 41
參、 實驗方法與步驟 43
3.1. 實驗設計與流程 43
3.1.1. 成份來源及其性質 43
3.1.2. 實驗設計與原理 46
3.1.3. 實驗規劃 47
3.1.4. 實驗參數 50
3.2. 乾式混粉與冷壓成型 51
3.3. 水平爐管真空液相燒結 51
3.4. 複合材料與接合封裝的性質與分析 54
3.4.1. 微結構觀察 54
3.4.2. 緻密度量測 54
3.4.3. 熱傳導係數量測 55
3.4.4. 熱膨脹係數量測 56
3.4.5. 熱循環測試 56
3.4.6. 表面粗糙度量測 60
3.4.7. 基板接合 61
3.4.8. 拉伸測試 62
肆、 結果與討論 63
4.1. 乾式混粉前粉末觀察 63
4.2. 接合前材料的熱性質 65
4.2.1. 活性元素添加對銅鋯基鑽石複材的熱性質影響 65
4.2.2. 基板的熱性質 74
4.3. 平整處理 75
4.3.1. 軟焊 77
4.3.2. 錫鈦薄片添加 79
4.3.3. 銅鋯薄片添加 83
4.4. 接合封裝之熱傳導係數量測 85
4.5. 接合封裝之界面熱阻理論分析 93
4.6. 熱循環測試結果 98
4.6.1. 銅鋯基鑽石複材的熱循環測試 99
4.6.2. 接合封裝的熱循環測試 104
4.7. 接合封裝之拉伸測試 111
4.7.1. 接合封裝之拉伸強度 111
4.7.2. 接合封裝之拉伸斷面分析 114
4.7.3. 接合封裝熱循環測試後的拉伸斷面分析 122
伍、 結論 136
陸、 建議未來研究方向 139
柒、 參考文獻 140

[1] R. C. Chu, "The Perpetual Challenges of Electronics Cooling Technology for Computer Product Applications – from Laptop to Supercomputer," presented at the National Taiwan University Presentation, (2003).
[2] J. Markoff, "Intel's Big Shift After Hitting Technical Wall", New York Times, May 17 (2004)
[3] 劉君愷, "3D IC散熱及可靠度設計技術 (Thermal and Reliability Issues for 3D IC)", 工業材料雜誌, 274 (2009) 99-107.
[4] R. Mahajan, C. P. Chiu, and G. Chrysler, "Cooling a Microprocessor Chip," in Proceedings of the IEEE,(2006). 1476-1486.
[5] K. Banerjee, S. C. Lin, and V. Wason, "Leakage and Variation aware Thermal Management of Nanometer Scale ICs," in Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, Palo Alto, CA,(2004).
[6] 黃振東, "淺談LED散熱材料及元件 (Brief Introduction of LED Thermal Management and Components)", 工業材料雜誌, 281 (2010) 73-83.
[7] R. Bollina and S. Knippscheer. "Advanced Metal Diamond Composites – Love and Heat Relationship", Electronics Cooling Magazine (2008)
[8] Z. Carl, "Thermal Materials Solve Power Electronics Challenges", Power Electronics Technology, 32 (2006) 40-47.
[9] D. M. Jacobson and S. P. S. Sangha, "Novel Low Expansion Packages for Elecronics", The GEC Journal of Technology, 14 (1997) 48-52.
[10] J. F. Silvain, Y. L. Petitcorps, E. Sellier, P. Bonniau, and V. Heim, "Elastic moduli, thermal expansion and microstructure of copper-matrix composite reinforced by continuous graphite fibres", Composites, 25 (1994) 570-574.
[11] D. Coupard, J. Goni, and J. F. Sylvain, "Fabrication and squeeze casting infiltration of graphite/alumina preforms", Journal of Materials Science, 34 (1999) 5307-5313.
[12] I. N. Orbulov1, Á. Németh1, and J. Dobránszky, "Composite Production by Pressure Infiltration", Materials Science Forum, 589 (2008) 137-142.
[13] 馮慶芬, 粉末冶金學, 新文京開發出版有限公司, (2002) 285-389.
[14] G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, "Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder", Science and Technology of Advanced Materials, 8 (2007) 644-654.
[15] http://www.fct-systeme.de/en/content/Spark_Plasma_Sintertechnologie/~nm.19~nc.40/SPS-Technology.html
[16] R. M. German, K. F. Hens, and J. L. Johnson, "Power-Metallurgy processing of Thermal Management Materials for Microelectronic Applications", International Journal of Powder Metallurgy, 30 (1994) 205-215.
[17] A. G. Every, Y. Tzou, D. P. H. HASSELMAN, and R. Raj, "The effect of particle size on the thermal conductivity of ZnS/diamond composites", Acta Metallurgica et Materialia, 40 (1992) 123-129.
[18] D. P. H. Hasselman, K. Y. Donaldson, and A. L. Geiger, "Effect of reinforement particle-size on the thermal-conductivity of a particulate-silicon carbide-reinfored aluminum matrix composite", Journal of the American Ceramic Society, 75 (1992) 3137-3140.
[19] L. Rayleigh. "On the Influence of Obstacles Arranged in Rectangular Order upon the Properties of a Medium", Philosophical Magazine (1892) 481-502.
[20] J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University, (1873) 365.
[21] D. P. H. Hasselman and L. F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance", Journal of Composite Materials, 21 (1987) 508-515.
[22] Z. Tan, Z. Li, D.-B. Xiong, G. Fan, G. Ji, and D. Zhang, "A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites", Materials and Design, 55 (2014) 257-262.
[23] R. Tavangar, J. M. Molina, and L. Weber, "Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast", Scripta Materialia, 56 (2007) 357-360.
[24] R. M. German, "A Modal of the Thermal-Properties of Liquid-Phase Sintered Composite", Metallurgical Transactions A, 24A (1993) 1745-1752.
[25] Y. Benveniste, "Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case", Journal of Applied Physics, 61 (1987) 2840-2843.
[26] J. C. Y. Koh and A. Fortini, "Prediction of thermal conductivity and electrical resistivity of porous metallic materials", International Journal of Heat and Mass Transfer, 16 (1973) 2013-2022.
[27] K. Chu, C. C. Jia, X. B. Liang, H. Chen, W. J. Gao, and H. Guo, "Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance", Materials & Design, 30 (2009) 4311-4316.
[28] J. Flaquer, A. Rios, A. Martin-Meizoso, S. Nogales, and H. Bohm, "Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites", Computational Materials Science, 41 (2007) 156-163.
[29] A. A. Fahmy and A. N. Ragai, "Thermal-Expansion Behavior of Two-Phase Solids", Journal of Applied Physics, 41 (1970) 5108-5111.
[30] E. H. Kerner, "The Elastic and Thermo-Elastic Properties of Composite Media", Proceeding of The Physical Society of London (B), 68 (1956) 808-813.
[31] P. S. Turner, "Thermal-Expansion Stresses in Reinforced Plastics", Journal of Research of the National Bureau of Standards, 37 (1946) 239-250.
[32] K. Chu, C. C. Jia, H. Guo, and W. S. Li, "On the thermal conductivity of Cu-Zr/diamond composites", Materials & Design, 45 (2013) 36-42.
[33] S. Barzilai, N. Argaman, N. Froumin, D. Fuks, and N. Frage, "First-principles modeling of metal layer adsorption on CaF2(111)", Surface Science, 602 (2008) 1517-1524.
[34] N. Eustathopoulus, M. G. Nicolas, and B. Drevet, "Wettability at High Temperatures", Pergamon Materials Series 3, (1999) 317-338.
[35] S. B. Ren, X. Y. Shen, C. Y. Guo, N. Liu, J. B. Zang, X. B. He, et al., "Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy", Composites Science and Technology, 71 (2001) 1550-1555.
[36] K. Nogi, Y. Okada, K. Ogino, and N. Iwamoto, "Wettability of diamond by liquid pure metals", Materials transactions-JIM, 35 (1994) 156-160.
[37] K. Yoshida and H. Morigami, "Thermal properties of diamond/copper composite material", Microelectronics Reliability, 44 (2004) 303-308.
[38] E. A. Ekimov, N. V. Suetin, A. F. Popovich, and V. G. Ralchenko, "Thermal conductivity of diamond composites sintered under high pressures", Diamond and Related Materials, 17 (2008) 838-843.
[39] A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, "High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix", Journal of Materials Science, 46 (2011) 1424-1438.
[40] C. Xue and J. K. Yu, "Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface", Surface & Coatings Technology, 217 (2013) 46-50.
[41] P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, "Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity", Composites Science and Technology, 66 (2006) 2677-2685.
[42] H. Chen, C. C. Jia, and S. J. Li, "Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques", Journal of Materials Science, 47 (2012) 3367-3375.
[43] I. E. Monje, E. Louis, and J. M. Molina, "Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control", Composites Part a-Applied Science and Manufacturing, 48 (2013) 9-14.
[44] Z. Q. Tan, Z. Q. Li, G. L. Fan, Q. Guo, X. Z. Kai, G. Ji, et al., "Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer", Materials & Design, 47 (2013) 160-166.
[45] http://www.siliconfareast.com/TCT.htm
[46] "JEDEC Standard , Temperature cycling, No. 22-A104D", J. S. S. T. Assiociation, (2009).
[47] "Test Method Standard, Microcircuits, MIL-STD 883E", U. S. d. standard, (1996).
[48] R. Kempers, R. Frizzell, A. Lyons, and A. J. Robinson, "Development of a Metal Micro-Textured Thermal Interface Material," presented at the ASME 2009 InterPACK Conference, (2009).
[49] http://www.tglobal.com.tw/what-is-thermal-interface-material.php
[50] K. M. F. Shahil and A. A. Balandin, "Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials", Nano Letters, 12 (2012) 861-867.
[51] 陳文媛, 楊邦朝, and 胡永達, "熱界面材料及其應用", 成都電子科技大學微電子與固體電子學院碩士論文, (2009)
[52] R. S. Prasher, J. Shipley, S. Prstic, P. Koning, and J.-l. Wang, "Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials", Heat Transfer, 125 (2003) 1170-1177.
[53] R. Prasher and C.-P. Chiu, Ch13. "Materials for Advanced Packaging", (2009) 437-458.
[54] http://tech.get.com.tw/tech/tech-2.htm
[55] http://www.ewh.ieee.org/soc/cpmt/press/pressimage.html
[56] http://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=ae371f5b-98c5-4f44-9ccb-5ca9d36fc8db
[57] http://www.factdiamond.com
[58] http://www.artc.tw
[59] http://www.icprotect.com.tw/index.html
[60] 華星儀器有限公司
[61] http://www.himikatus.ru/art/phase-diagr1/C-Zr.php
[62] S. V. Kidalov and F. M. Shakhov, "Thermal Conductivity of Diamond Composites", 2 (2009) 2467-2395.
[63] 曾筱婷, "鑽石/銀-鈦基複合材料之熱性質與熱循環可靠性測試", 國立清華大學材料科學工程學系碩士論文, (2014)
[64] D. Arias and J. P. Abrlata, "Cu-Zr (Copper-Zirconium) ", Bulletin of Alloy Phase Diagrams, 11 (1990) 452-459.
[65] "Thermal Diffusivity-Thermal Conductivity: Method, Technique, Applications", NETZCH Company Brochure, 2-11.
[66] "TA Instrument 2940 Thermomechanical Analyzer (TMA) Operating Instructions", TMA Instruction Manual, 4-11.
[67] 吳文成, "無電鍍鈷鎢磷薄膜應用於凸塊底層金屬化之擴散阻障層之研究", 國立交通大學材料科學與工程學系碩士論文, (2006)
[68] 楊曼寧, "電子構裝鑽石/銅鋯複合材之製程及熱性質研究", 國立清華大學材料科學工程學系碩士論文, (2013)
[69] W. Tong Hong, S. N. Paisner, L. Chang-Chi, S. Chen, and L. Yi-Shao, "Effect of surface roughness of silicon die and copper heat spreader on thermal performance of HFCBGA," in Microsystems, Packaging, Assembly and Circuits Technology Conference. 4th International,(2009). 581-584.
[70] http://www.lytron.com/Tools-and-Technical-Reference/Application-Notes/Reducing-Contact-Thermal-Resistance
[71] J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. N. Lee, Z. Metallkde, 87 (1996) 205-212.
[72] 林資烜, "電子構裝鑽石/錫-鈦複合材之製程及其熱性質", 國立清華大學碩士論文, (2013)
[73] T. H. Wang, S. N. Paisner, C.-C. Lee, S. Chen, and Y.-S. Lai, "Effect of surface roughness of silicon die and copper heat spreader on thermal performance of HFCBGA", Microelectronics Reliability, 51 (2011) 1372–1376.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top