跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王凱正
研究生(外文):Wang, Kai-Cheng
論文名稱:CZTSSe薄膜太陽能電池之長晶及表面硫化過程研究
論文名稱(外文):Investigation of growth mechanism and surface sulfurization of CZTSSe thin film solar cell
指導教授:陳學仕
指導教授(外文):Chen, Hsueh-Shih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:CZTSeCZTSSe太陽能電池磁控濺鍍硒化後硫化
外文關鍵詞:CZTSeCZTSSesolar cellsmagnetron sputtersulfurization after selenization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用磁控濺鍍系統將銅-鋅-錫合金靶及鋅靶濺鍍於鉬玻璃上製備銅-鋅-錫前驅物,接著前驅物進行硒化及後硫化製程(sulfurization after selenization process, SAS)。在SAS製程中,首先將銅-鋅-錫前驅物放進爐管,在H2Se/Ar氣氛中於475 ℃下硒化15分鐘,再升溫至495 ℃,於H2S/Ar氣氛中硫化15分鐘,最後可得Cu2ZnSn(S, Se)4 (CZTSSe)薄膜。為了探討SAS製程中之硒化及硫化之效應,本研究著重於兩部分,第一部分為銅-鋅-錫前驅物薄膜於不同硒化溫度下之成長,此部分研究利用掃描式電子顯微鏡(SEM)及能量分散光譜(EDX)來觀察薄膜表面形貌、厚度及元素分佈情況,由低掠角X光繞射(GIXRD)圖及拉曼光譜鑒定未知相,最後提出Cu2ZnSnSe4 (CZTSe)薄膜之可能成長機制。製備成元件後,由電流-電壓(I-V)及外部量子效率(EQE)之量測數據,可得之最佳元件效率為475 ℃下硒化之樣品(樣品編號:CZTSe-475),在AM 1.5G下,開路電壓及短路電流分別為0.27 V及22.6 mA/cm2,轉換效率為2.1%;另一部分研究為經SAS製程之樣品性質分析(樣品編號:CZTSSe-7.5),在AM 1.5G下,開路電壓及短路電流分別為0.39 V及33.1 mA/cm2,元件轉換效率達7.5%。比較CZTSSe-7.5及CZTSe-475兩元件於不同偏壓下EQE量測結果後發現,CZTSe-475之EQE (-0.5 V)/EQE (0 V)比值於短波長區域(400-600 nm)增加,然而CZTSSe-7.5之EQE比值並沒有明顯改變,此結果顯示硫化過程應扮演薄膜之鈍化作用,減少了表面缺陷,因而提升元件效率。從導電式原子力顯微鏡(conductive atomic force microscopy)觀察後發現,局部電流多出現於CZTSe-475及CZTSSe-7.5薄膜表面晶界附近,另外,光致螢光光譜(photoluminescence spectroscopy)顯示CZTSe-475及CZTSSe-7.5薄膜內可能存在VCu及ZnCu缺陷,而CZTSSe-7.5薄膜內亦可能存有ZnSn缺陷,可能為降低元件光轉換效率之原因。
In this study, Cu-Zn-Sn (CZT) precursor film was deposited on a Mo-coated soda-lime glass substrate by a DC-magnetron sputter with alloy Cu-Zn-Sn and Zn targets. As-prepared CZT precursor film was moved to a tube furnace for selenization and post sulfurization (sulfurization after selenization, SAS) process. Experimentally, CZT precursor film was first selenized at 475 ℃ in H2Se/Ar atmosphere for 15 minutes, followed by sulfurization at 495 ℃ in H2S/Ar atmosphere for 15 minutes to form Cu2ZnSn(S, Se)4 (CZTSSe) thin film. In order to understand the role of selenization and sulfurization in the SAS process, the study is divided into two parts. The first part is focused on the grain growth of CZT precursor film at different selenization temperatures. Surface morphology, thickness and element distribution were examined by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). The crystallography and phase information of the samples were studied by glazing angle X-ray diffraction (GIXRD) and Raman spectroscopy. Based on the experimental results, a plausible growth model of Cu2ZnSnSe4 (CZTSe) thin film was proposed. The CZTSe device properties were analyzed by I-V and external quantum efficiency measument systems. Among all samples, precursor film selenized at 475 ℃, which was called CZTSe-475, had the highest conversion efficiency of 2.1%, open circuit voltage of 0.27 V and short circuit current density of 22.6 mA/cm¬2 under AM 1.5G illumination. In the second part, a selenized sample treated with an additional sulfurization (SAS) process (device named as CZTSSe-7.5) had the conversion efficiency of 7.5%, open circuit voltage of 0.39 V and short circuit current density of 33.1 mA/cm¬2 under AM 1.5G illumination. Compared the CZTSe-475 device with the CZTSSe-7.5 one under a negative applied voltage (e.g., -0.5 V), the ratio of EQE (-0.5 V)/EQE (0 V) of the CZTSe-475 device increased in the short wavelength region (400-600 nm), but the ratio had no change in the CZTSSe-7.5 device. The result suggests that the defect density in the CZTSSe-7.5 device would be smaller than that in the CZTSe-475 device, which implies that the effect of the SAS process was passivation for the thin film. Moreover, conductive atomic force microscopy (CAFM) shows that local current appeared to exist near the grain boundaries (GBs). Photoluminescence study exhibits that both VCu and ZnCu defects existed in CZTSe-475 and CZTSSe-7.5 thin films. On the other hand, ZnSn defect, which might decrease the conversion efficiency of the device, was thought to exist only in CZTSSe-7.5 thin film.
致謝 i
中文摘要 ii
Abstract iii
第一章 前言 1
第二章 文獻回顧 2
2.1 Cu2ZnSn(S, Se)4 (CZTSSe)太陽能電池簡介 2
2.2 電鍍沉積法(Electrochemical deposition method) 3
2.3 溶液法製備CZTSSe 8
2.4 蒸鍍製程法(evaporation) 17
2.5 濺鍍製程法(sputter) 22
2.6 研究動機 30
第三章 實驗步驟 32
3.1 CZTSSe元件製備 32
3.1.1 基板 32
3.1.2 製備CZTSSe吸收層 33
3.1.2.1 沉積銅-鋅-錫金屬前驅物 33
3.1.2.2 硒化後硫化製程(sulfurization after selenization process, SAS) 34
3.1.3 緩衝層CdS 35
3.1.4 氧化鋅(ZnO)透光層(window layer) 36
3.1.5 鎳-鋁網格(Ni-Al grid)電極 37
3.2 CZTSSe薄膜及元件之分析 38
3.2.1 掃描式電子顯微鏡(scanning electron microscopy, SEM) 38
3.2.2 能量分散光譜儀(energy dispersive x-ray spectroscopy, EDX) 38
3.2.3 低掠角X光繞射(grazing angle X-ray diffraction, GIXRD) 39
3.2.4 拉曼(Raman)光譜 39
3.2.5 效率量測(I-V曲線) 40
3.2.6 外部量子效率(external quantum efficiency, EQE) 41
3.2.7 光致螢光光譜(photoluminescence, PL) 41
3.2.8 歐傑電子能譜儀(Auger electron spectroscopy, AES) 42
3.2.9 導電式原子力顯微鏡(conductive atomic force microscopy, CAFM) 43
第四章 結果與討論 44
4.1 275 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-275) 44
4.2 325 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-325) 46
4.3 375 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-375) 50
4.4 425 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-425) 52
4.5 475 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-475) 56
4.6 525 ℃下硒化銅-鋅-錫前驅物之結果(樣品編號:CZTSe-525) 60
4.7 銅-鋅-錫前驅物於H2Se/Ar氣氛下之成長 63
4.8 硒化後硫化(SAS)製備CZTSSe元件(樣品編號:CZTSSe-7.5) 65
4.9 比較CZTSe-475與CZTSSe-7.5 69
第五章 結論 77
第六章 未來展望 78
參考文獻 79

1. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 2015, 23 (1), 1-9.
2. Delbos, S. Kësterite thin films for photovoltaics: a review. EPJ. Photovolt. 2012, 3, 35004.
3. Schorr, S. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 2011, 95 (6), 1482-1488.
4. Ito, K.; Nakazawa, T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 1988, 27 (11R), 2094.
5. Chan, C.; Lam, H.; Surya, C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 2010, 94 (2), 207-211.
6. He, J.; Sun, L.; Ding, N.; Kong, H.; Zuo, S.; Chen, S.; Chen, Y.; Yang, P.; Chu, J. Single-step preparation and characterization of Cu2ZnSn(Sx, Se1−x)4 thin films deposited by pulsed laser deposition method. J. Alloys Compd. 2012, 529, 34-37.
7. He, J.; Sun, L.; Chen, S.; Chen, Y.; Yang, P.; Chu, J. Composition dependence of structure and optical properties of Cu2ZnSn(S, Se)4 solid solutions: an experimental study. J. Alloys Compd. 2012, 511 (1), 129-132.
8. Levcenco, S.; Dumcenco, D.; Wang, Y.; Huang, Y.; Ho, C.-H.; Arushanov, E.; Tezlevan, V.; Tiong, K. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(Sx, Se1− x)4 solid solutions. Opt. Mater. 2012, 34 (8), 1362-1365.
9. Timmo, K.; Altosaar, M.; Raudoja, J.; Muska, K.; Pilvet, M.; Kauk, M.; Varema, T.; Danilson, M.; Volobujeva, O.; Mellikov, E. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells. Sol. Energy Mater. Sol. Cells 2010, 94 (11), 1889-1892.
10. Ford, G. M.; Guo, Q.; Agrawal, R.; Hillhouse, H. W. Earth Abundant Element Cu2Zn(Sn1−x, Gex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chem. Mater. 2011, 23 (10), 2626-2629.
11. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961, 32 (3), 510-519.
12. Katagiri, H.; Jimbo, K.; Tahara, M.; Araki, H.; Oishi, K., In MRS Spring Meeting. The influence of the composition ratio on CZTS-based thin film solar cells. April 2009, p. 125–136.
13. Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Kötschau, I.; Schock, H.-W.; Schurr, R.; Hölzing, A.; Jost, S.; Hock, R. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 2009, 517 (7), 2511-2514.
14. Todorov, T. K.; Reuter, K. B.; Mitzi, D. B. High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber. Adv. Mater. 2010, 22 (20), E156-E159.
15. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455-2460.
16. Barkhouse, D. A. R.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Mitzi, D. B. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se, S)4 solar cell. Prog. Photovolt. 2012, 20 (1), 6-11.
17. Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4 (7).
18. Polizzotti, A.; Repins, I. L.; Noufi, R.; Wei, S.-H.; Mitzi, D. B. The state and future prospects of kesterite photovoltaics. Energy. Environ. Sci. 2013, 6 (11), 3171-3182.
19. Araki, H.; Kubo, Y.; Mikaduki, A.; Jimbo, K.; Maw, W. S.; Katagiri, H.; Yamazaki, M.; Oishi, K.; Takeuchi, A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Sol. Energy Mater. Sol. Cells 2009, 93 (6), 996-999.
20. Araki, H.; Kubo, Y.; Jimbo, K.; Maw, W. S.; Katagiri, H.; Yamazaki, M.; Oishi, K.; Takeuchi, A. Preparation of Cu2ZnSnS4 thin films by sulfurization of co‐electroplated Cu‐Zn‐Sn precursors. Phys. Status Solidi C 2009, 6 (5), 1266-1268.
21. Scragg, J. J.; Berg, D. M.; Dale, P. J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. J. Electroanal. Chem. 2010, 646 (1), 52-59.
22. Ahmed, S.; Reuter, K. B.; Gunawan, O.; Guo, L.; Romankiw, L. T.; Deligianni, H. A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2012, 2 (2), 253-259.
23. Guo, L.; Zhu, Y.; Gunawan, O.; Gokmen, T.; Deline, V. R.; Ahmed, S.; Romankiw, L. T.; Deligianni, H. Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency. Prog. Photovolt. 2014, 22 (1), 58-68.
24. Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 2009, 93 (5), 583-587.
25. Tanaka, K.; Fukui, Y.; Moritake, N.; Uchiki, H. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 2011, 95 (3), 838-842.
26. Guo, Q.; Hillhouse, H. W.; Agrawal, R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 2009, 131 (33), 11672-11673.
27. Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132 (49), 17384-17386.
28. Cao, Y.; Denny Jr, M. S.; Caspar, J. V.; Farneth, W. E.; Guo, Q.; Ionkin, A. S.; Johnson, L. K.; Lu, M.; Malajovich, I.; Radu, D. High-efficiency solution-processed Cu2ZnSn(S, Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 2012, 134 (38), 15644-15647.
29. Todorov, T.; Gunawan, O.; Chey, S. J.; de Monsabert, T. G.; Prabhakar, A.; Mitzi, D. B. Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films 2011, 519 (21), 7378-7381.
30. Todorov, T. K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D. B. Beyond 11% efficiency: characteristics of state‐of‐the‐art Cu2ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 2013, 3 (1), 34-38.
31. Ki, W.; Hillhouse, H. W. Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent. Adv. Energy Mater. 2011, 1 (5), 732-735.
32. Chen, S.; Walsh, A.; Yang, J.-H.; Gong, X.; Sun, L.; Yang, P.-X.; Chu, J.-H.; Wei, S.-H. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. Phys. Rev. B 2011, 83 (12), 125201.
33. Woo, K.; Kim, Y.; Moon, J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy. Environ. Sci. 2012, 5 (1), 5340-5345.
34. Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokotag, T., In Photovoltaic Science and Engineering Conf.-9, Preparation and evolution of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursor. Miyazaki, 1996, p. 745.
35. Katagiri, H. et al., In World Conf. on Photovoltaic Energy Conversion-2, Vienna, 1998, p. 640.
36. Katagiri, H.; Saitoh, K.; Washio, T.; Shinohara, H.; Kurumadani T.; Miyajima, S., In Photovoltaic Science and Engineering Conf.-11, Development of Thin film solar cell based on Cu2ZnSnS4 thin films. Sapporo, 1999, p. 647.
37. Katagiri, H.; Jimbo, K.; Monva, K.; Tsuchida K., In Proc. World Conf. on Photovoltaic Energy Conversion-3, Solar cell without environmental pollution by using CZTS thin film. Osaka, 2003, p. 2874.
38. Katagiri, H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films 2005, 480, 426-432.
39. Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw, W. S.; Fukano, T.; Ito, T.; Motohiro, T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Lett. 2008, 1 (4), 041201.
40. Jimbo, K.; Kimura, R.; Kamimura, T.; Yamada, S.; Maw, W. S.; Araki, H.; Oishi, K.; Katagiri, H. Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 2007, 515 (15), 5997-5999.
41. Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N. A.; Chey, S. J.; Guha, S. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber. Prog. Photovolt. 2013, 21 (1), 72-76.
42. Zoppi, G.; Forbes, I.; Miles, R. W.; Dale, P. J.; Scragg, J. J.; Peter, L. M. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Prog. Photovolt. 2009, 17 (5), 315-319.
43. Salomé, P.; Fernandes, P.; da Cunha, A. Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers. Thin Solid Films 2009, 517 (7), 2531-2534.
44. Chawla, V.; Clemens, B. In Photovoltaic Specialists Conference (PVSC), Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets. 2012 38th IEEE, IEEE: 2012; pp 002990-002992.
45. Fontané, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodriguez, A.; Morante, J.; Berg, D.; Dale, P.; Siebentritt, S. In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 2011, 98 (18), 181905.
46. Lechner, R.; Jost, S.; Palm, J.; Gowtham, M.; Sorin, F.; Louis, B.; Yoo, H.; Wibowo, R.; Hock, R. Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors. Thin Solid Films 2013, 535, 5-9.
47. Emrani, A.; Vasekar, P.; Westgate, C. R. Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 2013, 98, 335-340.
48. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M. New world record efficiency for Cu(In, Ga)Se2 thin‐film solar cells beyond 20%. Prog. Photovolt. 2011, 19 (7), 894-897.
49. Powalla, M.; Jackson, P.; Hariskos, D.; Paetel, S.; Witte, W.; Würz, R.; Lotter, E.; Menner, R.; Wischmann, W. In 29th European Photovoltaic Solar Energy Conference, CIGS thin-film solar cells with an improved efficiency of 20.8%, 2014.
50. Salomé, P.; Malaquias, J.; Fernandes, P.; Ferreira, M.; Da Cunha, A.; Leitao, J.; González, J.; Matinaga, F. Growth and characterization of Cu2ZnSn(S, Se)4 thin films for solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 147-153.
51. Yin, X.; Tang, C.; Sun, L.; Shen, Z.; Gong, H. Study on phase formation mechanism of non-and near-stoichiometric Cu2ZnSn(S, Se)4 film prepared by selenization of Cu-Sn-Zn-S precursors. Chem. Mater. 2014, 26 (6), 2005-2014.
52. Yin, X.; Huang, T. J.; Tang, C.; Du, M.; Sun, L.; Shen, Z.; Gong, H. Significantly different mechanical properties and interfacial structures of Cu2ZnSn(S, Se)4 films prepared from metallic and sulfur-contained precursors. Sol. Energy Mater. Sol. Cells 2015, 134, 389-394.
53. Grossberg, M.; Krustok, J.; Raudoja, J.; Timmo, K.; Altosaar, M.; Raadik, T. Photoluminescence and Raman study of Cu2ZnSn(Sex, S1−x)4 monograins for photovoltaic applications. Thin Solid Films 2011, 519 (21), 7403-7406.
54. Perna, G.; Lastella, M.; Ambrico, M.; Capozzi, V. Temperature dependence of the optical properties of ZnSe films deposited on quartz substrate. Appl. Phys. A 2006, 83 (1), 127-130.
55. He, J.; Tao, J.; Meng, X.; Dong, Y.; Zhang, K.; Sun, L.; Yang, P.; Chu, J. Effect of selenization time on the growth of Cu2ZnSnSe4 thin films obtained from rapid thermal processing of stacked metallic layers. Mater. Lett. 2014, 126, 1-4.
56. Gürel, T.; Sevik, C.; Çağın, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84 (20), 205201.
57. Altosaar, M.; Raudoja, J.; Timmo, K.; Danilson, M.; Grossberg, M.; Krustok, J.; Mellikov, E. Cu2Zn1–xCdxSn(Se1–y, Sy)4 solid solutions as absorber materials for solar cells. Phys. Status Solid A 2008, 205 (1), 167-170.
58. Redinger, A.; Berg, D. M.; Dale, P. J.; Siebentritt, S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 2011, 133 (10), 3320-3323.
59. Kim, G. Y.; Kim, J. R.; Jo, W.; Son, D.-H.; Kim, D.-H.; Kang, J.-K. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S, Se)4 thin films grown by sputtering-based two-step process. Nanoscale Res. Lett. 2014, 9 (1), 1-5.
60. Li, J. B.; Chawla, V.; Clemens, B. M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 2012, 24 (6), 720-723.
61. Muhunthan, N.; Singh, O. P.; Toutam, V.; Singh, V. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques. Mater. Res. Bull. 2015, 70, 373-378.
62. Jeong, A.; Kim, G.; Jo, W.; Nam, D.; Cheong, H.; Jo, H.; Kim, D.; Sung, S.; Kang, J.; Lee, D. Local current transport and surface potential of photovoltaic Cu(In, Ga)Se2 thin films probed by multi-scale imaging methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (1), 015007.
63. Romero, M. J.; Du, H.; Teeter, G.; Yan, Y.; Al-Jassim, M. M. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys. Rev. B 2011, 84 (16), 165324.
64. Chen, S.; Yang, J.-H.; Gong, X.; Walsh, A.; Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 2010, 81 (24), 245204.
65. Grossberg, M.; Krustok, J.; Raudoja, J.; Raadik, T. The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl. Phys. Lett. 2012, 101 (10), 102102.
66. Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 2010, 96 (2), 021902.
67. Sarswat, P. K.; Free, M. L. A study of energy band gap versus temperature for Cu2ZnSnS4 thin films. Physica B: Condens. Matter 2012, 407 (1), 108-111.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊