|
1. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 2015, 23 (1), 1-9. 2. Delbos, S. Kësterite thin films for photovoltaics: a review. EPJ. Photovolt. 2012, 3, 35004. 3. Schorr, S. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 2011, 95 (6), 1482-1488. 4. Ito, K.; Nakazawa, T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 1988, 27 (11R), 2094. 5. Chan, C.; Lam, H.; Surya, C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 2010, 94 (2), 207-211. 6. He, J.; Sun, L.; Ding, N.; Kong, H.; Zuo, S.; Chen, S.; Chen, Y.; Yang, P.; Chu, J. Single-step preparation and characterization of Cu2ZnSn(Sx, Se1−x)4 thin films deposited by pulsed laser deposition method. J. Alloys Compd. 2012, 529, 34-37. 7. He, J.; Sun, L.; Chen, S.; Chen, Y.; Yang, P.; Chu, J. Composition dependence of structure and optical properties of Cu2ZnSn(S, Se)4 solid solutions: an experimental study. J. Alloys Compd. 2012, 511 (1), 129-132. 8. Levcenco, S.; Dumcenco, D.; Wang, Y.; Huang, Y.; Ho, C.-H.; Arushanov, E.; Tezlevan, V.; Tiong, K. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(Sx, Se1− x)4 solid solutions. Opt. Mater. 2012, 34 (8), 1362-1365. 9. Timmo, K.; Altosaar, M.; Raudoja, J.; Muska, K.; Pilvet, M.; Kauk, M.; Varema, T.; Danilson, M.; Volobujeva, O.; Mellikov, E. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells. Sol. Energy Mater. Sol. Cells 2010, 94 (11), 1889-1892. 10. Ford, G. M.; Guo, Q.; Agrawal, R.; Hillhouse, H. W. Earth Abundant Element Cu2Zn(Sn1−x, Gex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chem. Mater. 2011, 23 (10), 2626-2629. 11. Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 1961, 32 (3), 510-519. 12. Katagiri, H.; Jimbo, K.; Tahara, M.; Araki, H.; Oishi, K., In MRS Spring Meeting. The influence of the composition ratio on CZTS-based thin film solar cells. April 2009, p. 125–136. 13. Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Kötschau, I.; Schock, H.-W.; Schurr, R.; Hölzing, A.; Jost, S.; Hock, R. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 2009, 517 (7), 2511-2514. 14. Todorov, T. K.; Reuter, K. B.; Mitzi, D. B. High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber. Adv. Mater. 2010, 22 (20), E156-E159. 15. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455-2460. 16. Barkhouse, D. A. R.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Mitzi, D. B. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se, S)4 solar cell. Prog. Photovolt. 2012, 20 (1), 6-11. 17. Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 2014, 4 (7). 18. Polizzotti, A.; Repins, I. L.; Noufi, R.; Wei, S.-H.; Mitzi, D. B. The state and future prospects of kesterite photovoltaics. Energy. Environ. Sci. 2013, 6 (11), 3171-3182. 19. Araki, H.; Kubo, Y.; Mikaduki, A.; Jimbo, K.; Maw, W. S.; Katagiri, H.; Yamazaki, M.; Oishi, K.; Takeuchi, A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Sol. Energy Mater. Sol. Cells 2009, 93 (6), 996-999. 20. Araki, H.; Kubo, Y.; Jimbo, K.; Maw, W. S.; Katagiri, H.; Yamazaki, M.; Oishi, K.; Takeuchi, A. Preparation of Cu2ZnSnS4 thin films by sulfurization of co‐electroplated Cu‐Zn‐Sn precursors. Phys. Status Solidi C 2009, 6 (5), 1266-1268. 21. Scragg, J. J.; Berg, D. M.; Dale, P. J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. J. Electroanal. Chem. 2010, 646 (1), 52-59. 22. Ahmed, S.; Reuter, K. B.; Gunawan, O.; Guo, L.; Romankiw, L. T.; Deligianni, H. A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2012, 2 (2), 253-259. 23. Guo, L.; Zhu, Y.; Gunawan, O.; Gokmen, T.; Deline, V. R.; Ahmed, S.; Romankiw, L. T.; Deligianni, H. Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency. Prog. Photovolt. 2014, 22 (1), 58-68. 24. Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol. Cells 2009, 93 (5), 583-587. 25. Tanaka, K.; Fukui, Y.; Moritake, N.; Uchiki, H. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 2011, 95 (3), 838-842. 26. Guo, Q.; Hillhouse, H. W.; Agrawal, R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 2009, 131 (33), 11672-11673. 27. Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132 (49), 17384-17386. 28. Cao, Y.; Denny Jr, M. S.; Caspar, J. V.; Farneth, W. E.; Guo, Q.; Ionkin, A. S.; Johnson, L. K.; Lu, M.; Malajovich, I.; Radu, D. High-efficiency solution-processed Cu2ZnSn(S, Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J. Am. Chem. Soc. 2012, 134 (38), 15644-15647. 29. Todorov, T.; Gunawan, O.; Chey, S. J.; de Monsabert, T. G.; Prabhakar, A.; Mitzi, D. B. Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films 2011, 519 (21), 7378-7381. 30. Todorov, T. K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D. B. Beyond 11% efficiency: characteristics of state‐of‐the‐art Cu2ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 2013, 3 (1), 34-38. 31. Ki, W.; Hillhouse, H. W. Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent. Adv. Energy Mater. 2011, 1 (5), 732-735. 32. Chen, S.; Walsh, A.; Yang, J.-H.; Gong, X.; Sun, L.; Yang, P.-X.; Chu, J.-H.; Wei, S.-H. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. Phys. Rev. B 2011, 83 (12), 125201. 33. Woo, K.; Kim, Y.; Moon, J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy. Environ. Sci. 2012, 5 (1), 5340-5345. 34. Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokotag, T., In Photovoltaic Science and Engineering Conf.-9, Preparation and evolution of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursor. Miyazaki, 1996, p. 745. 35. Katagiri, H. et al., In World Conf. on Photovoltaic Energy Conversion-2, Vienna, 1998, p. 640. 36. Katagiri, H.; Saitoh, K.; Washio, T.; Shinohara, H.; Kurumadani T.; Miyajima, S., In Photovoltaic Science and Engineering Conf.-11, Development of Thin film solar cell based on Cu2ZnSnS4 thin films. Sapporo, 1999, p. 647. 37. Katagiri, H.; Jimbo, K.; Monva, K.; Tsuchida K., In Proc. World Conf. on Photovoltaic Energy Conversion-3, Solar cell without environmental pollution by using CZTS thin film. Osaka, 2003, p. 2874. 38. Katagiri, H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films 2005, 480, 426-432. 39. Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw, W. S.; Fukano, T.; Ito, T.; Motohiro, T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Lett. 2008, 1 (4), 041201. 40. Jimbo, K.; Kimura, R.; Kamimura, T.; Yamada, S.; Maw, W. S.; Araki, H.; Oishi, K.; Katagiri, H. Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 2007, 515 (15), 5997-5999. 41. Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N. A.; Chey, S. J.; Guha, S. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber. Prog. Photovolt. 2013, 21 (1), 72-76. 42. Zoppi, G.; Forbes, I.; Miles, R. W.; Dale, P. J.; Scragg, J. J.; Peter, L. M. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Prog. Photovolt. 2009, 17 (5), 315-319. 43. Salomé, P.; Fernandes, P.; da Cunha, A. Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers. Thin Solid Films 2009, 517 (7), 2531-2534. 44. Chawla, V.; Clemens, B. In Photovoltaic Specialists Conference (PVSC), Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets. 2012 38th IEEE, IEEE: 2012; pp 002990-002992. 45. Fontané, X.; Calvo-Barrio, L.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodriguez, A.; Morante, J.; Berg, D.; Dale, P.; Siebentritt, S. In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 2011, 98 (18), 181905. 46. Lechner, R.; Jost, S.; Palm, J.; Gowtham, M.; Sorin, F.; Louis, B.; Yoo, H.; Wibowo, R.; Hock, R. Cu2ZnSn(S, Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors. Thin Solid Films 2013, 535, 5-9. 47. Emrani, A.; Vasekar, P.; Westgate, C. R. Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 2013, 98, 335-340. 48. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M. New world record efficiency for Cu(In, Ga)Se2 thin‐film solar cells beyond 20%. Prog. Photovolt. 2011, 19 (7), 894-897. 49. Powalla, M.; Jackson, P.; Hariskos, D.; Paetel, S.; Witte, W.; Würz, R.; Lotter, E.; Menner, R.; Wischmann, W. In 29th European Photovoltaic Solar Energy Conference, CIGS thin-film solar cells with an improved efficiency of 20.8%, 2014. 50. Salomé, P.; Malaquias, J.; Fernandes, P.; Ferreira, M.; Da Cunha, A.; Leitao, J.; González, J.; Matinaga, F. Growth and characterization of Cu2ZnSn(S, Se)4 thin films for solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 147-153. 51. Yin, X.; Tang, C.; Sun, L.; Shen, Z.; Gong, H. Study on phase formation mechanism of non-and near-stoichiometric Cu2ZnSn(S, Se)4 film prepared by selenization of Cu-Sn-Zn-S precursors. Chem. Mater. 2014, 26 (6), 2005-2014. 52. Yin, X.; Huang, T. J.; Tang, C.; Du, M.; Sun, L.; Shen, Z.; Gong, H. Significantly different mechanical properties and interfacial structures of Cu2ZnSn(S, Se)4 films prepared from metallic and sulfur-contained precursors. Sol. Energy Mater. Sol. Cells 2015, 134, 389-394. 53. Grossberg, M.; Krustok, J.; Raudoja, J.; Timmo, K.; Altosaar, M.; Raadik, T. Photoluminescence and Raman study of Cu2ZnSn(Sex, S1−x)4 monograins for photovoltaic applications. Thin Solid Films 2011, 519 (21), 7403-7406. 54. Perna, G.; Lastella, M.; Ambrico, M.; Capozzi, V. Temperature dependence of the optical properties of ZnSe films deposited on quartz substrate. Appl. Phys. A 2006, 83 (1), 127-130. 55. He, J.; Tao, J.; Meng, X.; Dong, Y.; Zhang, K.; Sun, L.; Yang, P.; Chu, J. Effect of selenization time on the growth of Cu2ZnSnSe4 thin films obtained from rapid thermal processing of stacked metallic layers. Mater. Lett. 2014, 126, 1-4. 56. Gürel, T.; Sevik, C.; Çağın, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84 (20), 205201. 57. Altosaar, M.; Raudoja, J.; Timmo, K.; Danilson, M.; Grossberg, M.; Krustok, J.; Mellikov, E. Cu2Zn1–xCdxSn(Se1–y, Sy)4 solid solutions as absorber materials for solar cells. Phys. Status Solid A 2008, 205 (1), 167-170. 58. Redinger, A.; Berg, D. M.; Dale, P. J.; Siebentritt, S. The consequences of kesterite equilibria for efficient solar cells. J. Am. Chem. Soc. 2011, 133 (10), 3320-3323. 59. Kim, G. Y.; Kim, J. R.; Jo, W.; Son, D.-H.; Kim, D.-H.; Kang, J.-K. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S, Se)4 thin films grown by sputtering-based two-step process. Nanoscale Res. Lett. 2014, 9 (1), 1-5. 60. Li, J. B.; Chawla, V.; Clemens, B. M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 2012, 24 (6), 720-723. 61. Muhunthan, N.; Singh, O. P.; Toutam, V.; Singh, V. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques. Mater. Res. Bull. 2015, 70, 373-378. 62. Jeong, A.; Kim, G.; Jo, W.; Nam, D.; Cheong, H.; Jo, H.; Kim, D.; Sung, S.; Kang, J.; Lee, D. Local current transport and surface potential of photovoltaic Cu(In, Ga)Se2 thin films probed by multi-scale imaging methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (1), 015007. 63. Romero, M. J.; Du, H.; Teeter, G.; Yan, Y.; Al-Jassim, M. M. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys. Rev. B 2011, 84 (16), 165324. 64. Chen, S.; Yang, J.-H.; Gong, X.; Walsh, A.; Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 2010, 81 (24), 245204. 65. Grossberg, M.; Krustok, J.; Raudoja, J.; Raadik, T. The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl. Phys. Lett. 2012, 101 (10), 102102. 66. Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 2010, 96 (2), 021902. 67. Sarswat, P. K.; Free, M. L. A study of energy band gap versus temperature for Cu2ZnSnS4 thin films. Physica B: Condens. Matter 2012, 407 (1), 108-111.
|