(44.192.112.123) 您好!臺灣時間:2021/03/08 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張展源
研究生(外文):Chang, Chan Yuen
論文名稱:有序氧化矽、氯化鈉單一原子層在矽晶面上的成長過程
論文名稱(外文):The Formation Process of Single Ordered Atomic Silicon Oxide and NaCl Layer on the Si(100) Surface
指導教授:林登松林登松引用關係
指導教授(外文):Lin, Deng Sung
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:136
中文關鍵詞:單一原子層氧化矽單一原子層氯化鈉異質介面成長獨立懸空鍵掃描穿隧式電子顯微術
外文關鍵詞:Single atomic silicon oxide layerSingle atomic NaCl layerHeterogeneous growthIsolated single dangling bondScanning tunneling microscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在過去幾十年來,超薄絕緣層在矽(100)面上的成長無論是基礎科學領域或是半導體工業製程方面來說都是非常重要的課題。其中,隨著晶片製持續微縮下,絕緣層與矽晶面的界面品質變得更重要且足以進一步影響整體元件的特性。因此,如果我們可以建立一個平台,讓上面的絕緣層及下面的矽晶面做更好結合,元件特性將能有效提升。在本論文裡,我們在矽(100)面上創造了兩種非常不同的平台層。
第一種是單層有序的氧化矽結構。藉有氧原子直接曝在表面的方式,迥於之前以氧分子做反應單元的方式,單一層且有序的氧化矽結構可以在室溫的情況下被做出來。關於氧原子在矽(100)面上的詳細反應過程也會做討論。此外,氧化矽從晶相轉換到非晶相結構的中間過程也可清楚的看到。根據我們提出的模型,從光電子能譜及掃描穿隧式電子顯微鏡得到的實驗數據在量化分析上是一致的。
至於第二個主題,藉由室溫下連續半反應的過程,單一異質層的氯化鈉成功長在矽(100)面上。第一道半反應是先把氯氣曝在表面上,進而形成氯原子吸附在表面的結構,其氯原子間的距離非常接近氯化鈉(100)表面上氯原子間的距離。藉由掃描穿隧式電子顯微鏡及光電子能譜技術的運用,在第二道半反應的製程中-鈉原子的蒸鍍,我們發現鈉原子會經由叢集、區塊的階段,把原本吸附在表面的氯原子轉化成單一層波浪狀的氯化鈉結構。新長出的單層氯化鈉以類似地毯的方式越過表面的階梯區域且進而覆蓋整個表面。在此氯化鈉層下方,矽表面的原子和電子結構與初始狀態且具雙原子單元之起伏特徵的矽表面非常接近。綜合所有的研究結果來看,此單一氯化鈉原子層以非常微弱的方式依附在此共價鍵結的表面上。

The ultrathin insulator growing on the Si(100) surface is a very important issue for the past decades regardless of the basic scientific field or semiconductor industry manufacture. In which, the quality of interface between the insulating film and silicon surface becomes a more important factor for affecting overall device performance by latest device size’s shrinking. Therefore, if we can construct one platform which can better combine above insulating film and below silicon surface, the device performance will promote effectively. In this thesis, we establish two very different kinds of platform layers on Si(100) surface.
The first one is single ordered atomic silicon oxide layer. By exposing oxygen atomic atoms rather than traditional method of oxygen molecular reactants, single monolayer and well-ordered silicon oxide layer can be created at room temperature. The detailed reaction process about oxygen atomic reactants reacting with Si(100) surface will be discussed. Besides, the process from the crystal to amorphous silicon oxide is also revealed clearly. The data acquiring from the XPS and STM techniques also can coincide very well on the basis of our proposed model.
As for the second topic, an atomic layer of stoichiometric NaCl was formed on a covalent Si(100) surface after two successive half-reactions at room temperature. The first half-reaction due to Cl2 exposure generates a square array of Cl adatoms with a distance close to that in a NaCl(100) surface plane. By utilizing scanning tunneling microscopy(STM) and core-level photoemission spectroscopy, it was found that progressive deposition of Na in the second-half reaction results in clusters, patches, and eventually turns the Cl-adlayer into a single-terrace, wavy NaCl layer at one monolayer Na coverage. The grown NaCl monolayer rolls over atomic steps like a carpet and covers the entire surface. The atomic and electronic structure of the topmost Si layer underneath the NaCl layer resembles that of the initial silicon surface layer with buckled dimers. Results of the comprehensive investigation together suggest that an ionic NaCl monolayer is very weakly bonded to the covalent substrate and appears nearly free standing.

摘要 i
Abstract iii
Acknowledgements v
Contents vi
List of Figures viii
List of Tables xviii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Si(100) surface 7
1.3 Literature review 12
1.3.1 Mainly reaction mechanics for O2/Si(100): backbond oxidation 13
1.3.1.1 Before oxidation 13
1.3.1.2 Oxide process 16
1.3.2 Surface replacement oxidation by O2: more energy favorable configuration 23
1.3.3 Surface etching for oxygen reactants 27
1.3.3.1 Surface temperature > RT 27
1.3.3.2 Surface temperature ≦ RT 31
1.3.3.3 The adsorption-induced desorption mechanics 35
1.3.4 Dynamics of oxygen diffuses through the silicon dioxide films 36
1.3.5 Review about thermal growth of silicon dioxide films on Si(100) 39
1.3.6 The thinnest human-made silicon oxide layer on various substrates until now 43
Chapter 2 Experimental apparatus 48
2.1 Vacuum system 48
2.2 Scanning Tunneling Microscopy (STM) 50
2.3 X-ray Photoemission Spectroscopy (XPS) 54
2.4 Thermal gas cracker 56
2.5 Sample preparation 58
Chapter 3 The formation process of single ordered atomic silicon oxide layer on the Si(100) Surface 60
3.1 Experimental methods 60
3.2 XPS information 62
3.3 STM data and model establishment 65
3.4 Comparison between XPS and STM results 74
Chapter 4 Atomic and electronic processes during the formation of an ionic NaCl monolayer on a covalent Si(100) surface 76
4.1 Experimental and theoretical methods 76
4.2 Results and discussion 78
4.2.1 Lattice constant of 2D NaCl 78
4.2.2 The starting Si(100) surface 80
4.2.3 The Si(100)-(2 × 1):Cl surface with a large surface dipole 81
4.2.4 Adsorption energy for a Na atom on Si(100)-(2 × 1):Cl 83
4.2.5 Na diffusion on Si(100)-(2 × 1):Cl and formation of clusters 87
4.2.6 STM results 90
4.2.7 Discussions of STM results at submonolayer coverage 95
4.2.8 The formation of a NaCl monolayer on Si(100) 98
4.2.9 Atomic model for the NaCl monolayer 101
4.2.10 Work function changes 105
4.2.11 Photoemission results 107
Chapter 5 Conclusion 113
Appendix A Adsorption and abstraction reactions of HCl on a single Si(100) dangling bond 116
A.1 Introduction 116
A.2 Experimental and computational details 119
A.3 Results and discussion 120
A.4 Summary 129
References 130


[1] E. Hasegawa, A. Ishitani, K. Akimoto, M. Tsukiji, and N. Ohtac, Journal of The Electrochemical Society 142, 273 (1995).
[2] S. Iwata and A. Ishizaka, Journal of Applied Physics 79, 6653 (1996).
[3] D. A. Muller and G. D. Wilk, Applied Physics Letters 79, 4195 (2001).
[4] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399, 758 (1999).
[5] F. Himpsel, F. McFeely, A. Taleb-Ibrahimi, J. Yarmoff, and G. Hollinger, Physical Review B 38, 6084 (1988).
[6] P. J. Grunthaner, M. H. Hecht, F. J. Grunthaner, and N. M. Johnson, Journal of Applied Physics 61, 629 (1987).
[7] D. A. Luh, T. Miller, and T. C. Chiang, Physical Review Letters 79, 3014 (1997).
[8] A. Ourmazd, D. Taylor, J. Rentschler, and J. Bevk, Physical Review Letters 59, 213 (1987).
[9] A. Pasquarello, M. S. Hybertsen, and R. Car, Applied Physics Letters 68, 625 (1996).
[10] R. Buczko, S. Pennycook, and S. Pantelides, Physical Review Letters 84, 943 (2000).
[11] I. Ohdomari, H. Akatsu, Y. Yamakoshi, and K. Kishimoto, Journal of Non-Crystalline Solids 89, 239 (1987).
[12] A. Pasquarello, M. S. Hybertsen, and R. Car, Nature 396, 58 (1998).
[13] K.-O. Ng and D. Vanderbilt, Physical Review B 59, 10132 (1999).
[14] L. Ciacchi and M. Payne, Physical Review Letters 95, 196101 (2005).
[15] D. A. Tichenor et al., 2000), pp. 48.
[16] J. J. Lin, D. W. Hwang, Y. T. Lee, and X. Yang, The Journal of Chemical Physics 109, 1758 (1998).
[17] J. R. Engstrom, M. M. Nelson, and T. Engel, Journal of Vacuum Science & Technology A 7, 1837 (1989).
[18] J. Engstrom and T. Engel, Physical Review B 41, 1038 (1990).
[19] J. R. Engstrom, D. J. Bonser, and T. Engel, Surface Science 268, 238 (1992).
[20] A. V. Osipov, P. Patzner, and P. Hess, Appl. Phys. A 82, 275 (2006).
[21] B. E. Deal and A. S. Grove, Journal of Applied Physics 36, 3770 (1965).
[22] E. Murad, Journal of Spacecraft and Rockets 33, 131 (1996).
[23] K. Masao, U. Keiji, K. Atsushi, K. Manabu, and S. Koichiro, Japanese Journal of Applied Physics 43, L203 (2004).
[24] A. Klust, Q. Yu, M. A. Olmstead, T. Ohta, F. S. Ohuchi, M. Bierkandt, C. Deiter, and J. Wollschläger, Applied Physics Letters 88 (2006).
[25] C. A. Lucas, G. C. L. Wong, C. S. Dower, F. J. Lamelas, and P. H. Fuoss, Surface Science 286, 46 (1993).
[26] E. Rotenberg, J. D. Denlinger, M. Leskovar, U. Hessinger, and M. A. Olmstead, Physical Review B 50, 11052 (1994).
[27] S. F. Tsay, J. Y. Chung, M. F. Hsieh, S. S. Ferng, C. T. Lou, and D. S. Lin, Surface Science 603, 419 (2009).
[28] V. Zielasek, T. Hildebrandt, and M. Henzler, Physical Review B 69, 205313 (2004).
[29] E.-A. Choi and K. J. Chang, Applied Physics Letters 94 (2009).
[30] A. Fissel, J. Da̧browski, and H. J. Osten, Journal of Applied Physics 91, 8986 (2002).
[31] J. Repp, G. Meyer, and K.-H. Rieder, Physical Review Letters 92, 036803 (2004).
[32] K. Glöckler, M. Sokolowski, A. Soukopp, and E. Umbach, Physical Review B 54, 7705 (1996).
[33] J.-Y. Chung, H.-D. Li, W.-H. Chang, T. C. Leung, and D.-S. Lin, Physical Review B 83, 085305 (2011).
[34] M. Pivetta, F. Patthey, M. Stengel, A. Baldereschi, and W.-D. Schneider, Physical Review B 72, 115404 (2005).
[35] W. Hebenstreit, J. Redinger, Z. Horozova, M. Schmid, R. Podloucky, and P. Varga, Surface Science 424, L321 (1999).
[36] I. Mauch, G. Kaindl, and A. Bauer, Surface Science 522, 27 (2003).
[37] L. Ramoino, M. von Arx, S. Schintke, A. Baratoff, H. J. Güntherodt, and T. A. Jung, Chemical Physics Letters 417, 22 (2006).
[38] S.-F. Tsay and D. S. Lin, Surface Science 603, 2102 (2009).
[39] K. E. J. Goh, L. Oberbeck, M. Y. Simmons, A. R. Hamilton, and R. G. Clark, Applied Physics Letters 85, 4953 (2004).
[40] W. Hebenstreit, M. Schmid, J. Redinger, R. Podloucky, and P. Varga, Physical Review Letters 85, 5376 (2000).
[41] C. T. Lou, H. D. Li, J. Y. Chung, D. S. Lin, and T. C. Chiang, Physical Review B 80, 195311 (2009).
[42] G. K. Wertheim, J. E. Rowe, D. N. E. Buchanan, and P. H. Citrin, Physical Review B 51, 13675 (1995).
[43] M. Ueta and W. Känzig, Physical Review 97, 1591 (1955).
[44] M.-F. Hsieh, Ph. D. thesis, National Chiao-Tung University, Taiwan (2009).
[45] T. Hoshino, M. Tsuda, S. Oikawa, and I. Ohdomari, Physical Review B 50, 14999 (1994).
[46] K. Kato, T. Uda, and K. Terakura, Physical Review Letters 80, 2000 (1998).
[47] B. A. Ferguson, C. T. Reeves, and C. B. Mullins, The Journal of Chemical Physics 110, 11574 (1999).
[48] A. Hemeryck, A. J. Mayne, N. Richard, A. Estève, Y. J. Chabal, M. Djafari Rouhani, G. Dujardin, and G. Comtet, The Journal of Chemical Physics 126 (2007).
[49] Y. Widjaja and C. B. Musgrave, The Journal of Chemical Physics 116, 5774 (2002).
[50] H. Kageshima and K. Shiraishi, Physical Review Letters 81, 5936 (1998).
[51] L. Incoccia, A. Balerna, S. Cramm, C. Kunz, F. Senf, and I. Storjohann, Surface Science 189–190, 453 (1987).
[52] J. H. Oh, K. Nakamura, K. Ono, M. Oshima, N. Hirashita, M. Niwa, A. Toriumi, and A. Kakizaki, Journal of Electron Spectroscopy and Related Phenomena 114–116, 395 (2001).
[53] H. W. Yeom, H. Hamamatsu, T. Ohta, and R. I. G. Uhrberg, Physical Review B 59, R10413 (1999).
[54] T. Yuden and Y. Akitaka, Japanese Journal of Applied Physics 41, 4253 (2002).
[55] D. G. Cahill and P. Avouris, Applied Physics Letters 60, 326 (1992).
[56] B. D. Yu et al., Physical Review B 70, 033307 (2004).
[57] M. L. Yu and B. N. Eldridge, Physical Review Letters 58, 1691 (1987).
[58] M. P. D'Evelyn, M. M. Nelson, and T. Engel, Surface Science 186, 75 (1987).
[59] J. R. Engstrom, D. J. Bonser, M. M. Nelson, and T. Engel, Surface Science 256, 317 (1991).
[60] J. R. Engstrom and T. Engel, Physical Review B 41, 1038 (1990).
[61] J. V. Seiple, C. Ebner, and J. P. Pelz, Physical Review B 53, 15432 (1996).
[62] T. Uchiyama, T. Uda, and K. Terakura, Surface Science 474, 21 (2001).
[63] T. Hoshino, Physical Review B 59, 2332 (1999).
[64] C. H. Choi, D.-J. Liu, J. W. Evans, and M. S. Gordon, Journal of the American Chemical Society 124, 8730 (2002).
[65] F. Khanom, A. R. Khan, F. Rahman, A. Takeo, H. Goto, and A. Namiki, Surface Science 601, 2924 (2007).
[66] A. Chatterjee, T. Iwasaki, T. Ebina, M. Kubo, and A. Miyamoto, The Journal of Physical Chemistry B 102, 9215 (1998).
[67] H. Tadatsugu, H. Masayuki, N. Saburo, N. Yasushiro, W. Takanobu, T. Kosuke, and O. Iwao, Japanese Journal of Applied Physics 42, 3560 (2003).
[68] N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1949).
[69] Y.-G. Jin and K. J. Chang, Physical Review Letters 86, 1793 (2001).
[70] K. Tatsumura, T. Shimura, E. Mishima, K. Kawamura, D. Yamasaki, H. Yamamoto, T. Watanabe, M. Umeno, and I. Ohdomari, Physical Review B 72, 045205 (2005).
[71] J. T. Fitch, G. Lucovsky, E. Kobeda, and E. A. Irene, Journal of Vacuum Science & Technology B 7, 153 (1989).
[72] E. Kobeda and E. A. Irene, Journal of Vacuum Science & Technology B 6, 574 (1988).
[73] K. Taniguchi, M. Tanaka, C. Hamaguchi, and K. Imai, Journal of Applied Physics 67, 2195 (1990).
[74] E. A. Taft, Journal of The Electrochemical Society 125, 968 (1978).
[75] J. H. Oh, H. W. Yeom, Y. Hagimoto, K. Ono, M. Oshima, N. Hirashita, M. Nywa, A. Toriumi, and A. Kakizaki, Physical Review B 63, 205310 (2001).
[76] J. Weissenrieder, S. Kaya, J. L. Lu, H. J. Gao, S. Shaikhutdinov, H. J. Freund, M. Sierka, T. K. Todorova, and J. Sauer, Physical Review Letters 95, 076103 (2005).
[77] D. Löffler et al., Physical Review Letters 105, 146104 (2010).
[78] C. Büchner et al., Chemistry – A European Journal 20, 9176 (2014).
[79] P. Y. Huang, S. Kurasch, J. S. Alden, A. Shekhawat, A. A. Alemi, P. L. McEuen, J. P. Sethna, U. Kaiser, and D. A. Muller, Science 342, 224 (2013).
[80] Oxford Scientific: Thermal Gas Cracker.
[81] C. R. Parkinson, M. Walker, and C. F. McConville, Surface Science 545, 19 (2003).
[82] B. Herd, J. C. Goritzka, and H. Over, The Journal of Physical Chemistry C 117, 15148 (2013).
[83] R. Kliese, B. Röttger, D. Badt, and H. Neddermeyer, Ultramicroscopy 42–44, Part 1, 824 (1992).
[84] SAES Getters S.p.A. Milan, Italy.
[85] Y. C. Chao, L. S. O. Johansson, and R. I. G. Uhrberg, Physical Review B 55, 7198 (1997).
[86] T. Engel, Surface Science Reports 18, 93 (1993).
[87] A. Pasquarello, M. S. Hybertsen, and R. Car, Physical Review Letters 74, 1024 (1995).
[88] H. W. Yeom, H. Hamamatsu, T. Ohta, and R. I. G. Uhrberg, Physical Review B 59, R10413 (1999).
[89] S.-S. Ferng, S.-T. Wu, D.-S. Lin, and T. C. Chiang, The Journal of Chemical Physics 130 (2009).
[90] H.-D. Li, C.-Y. Chang, L.-Y. Chien, S.-H. Chang, T. C. Chiang, and D.-S. Lin, Physical Review B 83, 075403 (2011).
[91] Y. Miyamoto and A. Oshiyama, Physical Review B 41, 12680 (1990).
[92] U. Khalilov, E. C. Neyts, G. Pourtois, and A. C. T. van Duin, The Journal of Physical Chemistry C 115, 24839 (2011).
[93] D. S. Lin, J. L. Wu, S. Y. Pan, and T. C. Chiang, Physical Review Letters 90, 046102 (2003).
[94] P. E. Blöchl, Physical Review B 50, 17953 (1994).
[95] G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999).
[96] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
[97] G. Kresse, Physical Review B 62, 8295 (2000).
[98] H. J. Monkhorst and J. D. Pack, Physical Review B 13, 5188 (1976).
[99] W. Tang, E. Sanville, and G. Henkelman, Journal of Physics: Condensed Matter 21, 084204 (2009).
[100] G. Henkelman, A. Arnaldsson, and H. Jónsson, Computational Materials Science 36, 354 (2006).
[101] R. F. W. Bader, Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1990.
[102] K. Sagisaka, D. Fujita, and G. Kido, Physical Review Letters 91, 146103 (2003).
[103] J. J. Boland, Advances in Physics 42, 129 (1993).
[104] K. Hata, S. Yoshida, and H. Shigekawa, Physical Review Letters 89, 286104 (2002).
[105] J. Nakamura and A. Natori, Physical Review B 71, 113303 (2005).
[106] J. Y. Lee and M.-H. Kang, Physical Review B 69, 113307 (2004).
[107] G. A. de Wijs, A. De Vita, and A. Selloni, Physical Review B 57, 10021 (1998).
[108] A. Agrawal, R. E. Butera, and J. H. Weaver, Physical Review Letters 98, 136104 (2007).
[109] N.-P. Wang, M. Rohlfing, P. Krüger, and J. Pollmann, Physical Review B 74, 155405 (2006).
[110] D. Purdie, N. S. Prakash, K. G. Purcell, P. L. Wincott, G. Thornton, and D. S. L. Law, Physical Review B 48, 2275 (1993).
[111] Q. Gao, C. C. Cheng, P. J. Chen, W. J. Choyke, and J. T. Yates, The Journal of Chemical Physics 98, 8308 (1993).
[112] S. P. Kolesnikov, S. N. Maksimov, and E. A. Smolenskii, Russian Chemical Bulletin 50, 740 (2001).
[113] J. J. Boland, Science 262, 1703 (1993).
[114] D. Lauvergnat, P. C. Hiberty, D. Danovich, and S. Shaik, The Journal of Physical Chemistry 100, 5715 (1996).
[115] C. Fonseca Guerra, J.-W. Handgraaf, E. J. Baerends, and F. M. Bickelhaupt, Journal of Computational Chemistry 25, 189 (2004).
[116] Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, 2007; p 1688.
[117] M.-F. Hsieh, D.-S. Lin, and S.-F. Tsay, Physical Review B 80, 045304 (2009).
[118] M.-F. Hsieh, J.-Y. Chung, D.-S. Lin, and S.-F. Tsay, The Journal of Chemical Physics 127 (2007).
[119] S. Yoshida, T. Kimura, O. Takeuchi, K. Hata, H. Oigawa, T. Nagamura, H. Sakama, and H. Shigekawa, Physical Review B 70, 235411 (2004).
[120] F. E. Olsson, M. Persson, J. Repp, and G. Meyer, Physical Review B 71, 075419 (2005).
[121] C. Schwennicke, J. Schimmelpfennig, and H. Pfnür, Surface Science 293, 57 (1993).
[122] R. Bennewitz, V. Barwich, M. Bammerlin, C. Loppacher, M. Guggisberg, A. Baratoff, E. Meyer, and H. J. Güntherodt, Surface Science 438, 289 (1999).
[123] S. Günther, S. Dänhardt, B. Wang, M. L. Bocquet, S. Schmitt, and J. Wintterlin, Nano Letters 11, 1895 (2011).
[124] N. D. Lang and W. Kohn, Physical Review B 3, 1215 (1971).
[125] R. D. Schnell, F. J. Himpsel, A. Bogen, D. Rieger, and W. Steinmann, Physical Review B 32, 8052 (1985).
[126] P. E. J. Eriksson and R. I. G. Uhrberg, Physical Review B 81, 125443 (2010).
[127] D. S. Lin, J. A. Carlisle, T. Miller, and T. C. Chiang, Physical Review Letters 69, 552 (1992).
[128] K.-H. Huang, T.-S. Ku, and D.-S. Lin, Physical Review B 56, 4878 (1997).
[129] M. P. J. Punkkinen et al., Physical Review B 77, 245302 (2008).
[130] A. Goldoni, S. Modesti, V. R. Dhanak, M. Sancrotti, and A. Santoni, Physical Review B 54, 11340 (1996).
[131] I. Lyubinetsky, Z. Dohnálek, W. J. Choyke, and J. T. Yates, Physical Review B 58, 7950 (1998).
[132] M. Dürr and U. Höfer, Surface Science Reports 61, 465 (2006).
[133] S. Schintke, S. Messerli, K. Morgenstern, J. Nieminen, and W.-D. Schneider, The Journal of Chemical Physics 114, 4206 (2001).
[134] Y. L. Li et al., Physical Review Letters 74, 2603 (1995).
[135] M. R. Tate et al., The Journal of Chemical Physics 111, 3679 (1999).
[136] M. R. Tate, D. P. Pullman, Y. L. Li, D. Gosalvez-Blanco, A. A. Tsekouras, and S. T. Ceyer, The Journal of Chemical Physics 112, 5190 (2000).
[137] R. C. Hefty, J. R. Holt, M. R. Tate, D. B. Gosalvez, M. F. Bertino, and S. T. Ceyer, Physical Review Letters 92, 188302 (2004).
[138] U. Diebold, W. Hebenstreit, G. Leonardelli, M. Schmid, and P. Varga, Physical Review Letters 81, 405 (1998).
[139] C. C. Finstad, A. G. Thorsness, and A. J. Muscat, Surface Science 600, 3363 (2006).
[140] J. M. Thomas, Journal of Chemical Education 38, 138 (1961).
[141] R. S. Nord and J. W. Evans, The Journal of Chemical Physics 82, 2795 (1985).
[142] M.-F. Hsieh, J.-Y. Cheng, J.-C. Yang, D.-S. Lin, K. Morgenstern, and W.-W. Pai, Physical Review B 81, 045324 (2010).
[143] M. Dürr, A. Biedermann, Z. Hu, U. Höfer, and T. F. Heinz, Science 296, 1838 (2002).
[144] X. Tong and R. A. Wolkow, Surface Science 600, L199 (2006).
[145] H. C. Flaum, D. J. D. Sullivan, and A. C. Kummel, The Journal of Physical Chemistry 98, 1719 (1994).
[146] G. J. Xu, A. W. Signor, A. Agrawal, K. S. Nakayama, B. R. Trenhaile, and J. H. Weaver, Surface Science 577, 77 (2005).
[147] G. W. Brown, H. Grube, M. E. Hawley, S. R. Schofield, N. J. Curson, M. Y. Simmons, and R. G. Clark, Journal of Applied Physics 92, 820 (2002).
[148] M. W. Radny et al., Physical Review B 74, 113311 (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔