跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏文耀
研究生(外文):Wei, Wen Yao
論文名稱:量子點鏈之閘控同調量子態
論文名稱(外文):Gate-controlled Coherent Quantum States in a Quantum Dot Chain
指導教授:陳正中陳正中引用關係
指導教授(外文):Chen, Jeng Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:105
中文關鍵詞:Quantum dot arrayMott transition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
This thesis presents experimental studies of the transport properties of a one-dimensional quantum dot array (QDA), consisting of six quantum dots defined by the surface gating technique in the two-dimensional electron gas formed at the interface of the GaAs/AlGaAs heterostructure. The gate geometry allows for control of both the inter-dot coupling and the potential of the array and enables us to explore the conductance (G) of the QDA from a confined electron system (G<2e2/h) to an open systems (G≥2e2/h). The G in the high magnetic field exhibits a series of Coulomb blockade peaks before the channel is pinched off, and a series of dip and peak structures on the last quantized plateau by biasing the gate voltage to a less negative value. The thesis describes two sets of experiments that focus on the regimes in G<2e2/h and G≈2e2/h, respectively. In the first set of experiments with G<2e2/h, we found that the Hubbard model is needed to explain the experimental results and present evidence of the Mott transition in the QDA. Through a combined operation of two gate voltages, the inter-dot coupling can be fine-tuned continuously to enable the QDA conductance spectrum to undergo a localization to delocalization transition process. The transformation of a single conductance peak to multiple overlapping peaks, indicating the elimination of charge quantization in the individual dots, is qualitatively consistent with descriptions of the Mott insulator to metal transition. In the second set of experiment with G≈2e2/h, we report the edge-state mediated transport property of the QDA. The conductance dips and peaks, superimposed on the last quantized plateau, evolve with the magnetic field and reveal a pronounced charging effect, which is gradually smeared with increasing temperature. The Coulomb blockade diamonds in the differential conductance spectrum show nested features distinctly different from those observed in conventional quantum dot systems. Novel collective quantum transport in the QDA network mediated by the edge states is responsible for the observed phenomena.

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline 7
References 8

Chapter 2 Theoretical background 11
2.1 Two-dimensional electron gas 11
2.2 Quantum point contacts 14
2.3 Quantum dots 16
2.4 Quantum dots in quantum Hall regime 22
References 25

Chapter 3 Experimental methods 29
3.1 Electron beam lithography 29
3.2 Device fabrication 31
3.3 Dilution refrigerators 33
3.4 Electronic measurement 36

Chapter 4 Multiple Mott transitions in gate-controlled linear quantum-dot arrays 39
4.1 Introduction 39
4.2 Experimental results and analysis 41
4.3 Appendix 48
References 52

Chapter 5 The edge state mediated collective transport in a network of quantum dot arrays 56
5.1 Introduction 56
5.2 Experimental results and analysis 58
5.3 Simulations based on the orthodox model 65
5.4 Fano effect 75
5.5 Appendix 86
References 94

Chapter 6 Conclusions 98

Chapter 1
[1] J. G. Bednorz and K. A. Muller, “Possible high Tc superconductivity in the Ba-La-Cu-O system,” Z. Phys. B. 64, 189, 1986.
[2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908, 1987.
[3] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 4260, 1994.
[4] P. A. Lee, N. Nagaosa, and X.-G. Wen, “Doping a Mott insulator: Physics of high-temperature superconductivity,” Rev. Mod. Phys. 78, 17, 2006.
[5] E. Dagotto, “Correlated electrons in high-temperature superconductors,” Rev. Mod. Phys. 66, 763, 1994.
[6] J. Bardeen, L.N. Cooper, and J.R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175, 1957.
[7] C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, “Pairing Symmetry and Flux Quantization in a Tricrystal Superconducting Ring of YBa2Cu3O7−δ,” Phys. Rev. Lett. 73, 593, 1994.
[8] C. C. Tsuei and J. R. Kirtley, “Pairing symmetry in cuprate superconductors,” Rev. Mod. Phys. 72, 969, 2000.
[9] J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. (London) A 276, 238, 1963.
[10] N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proc. Phys. Soc. A 62, 416, 1949.
[11] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039, 1998.
[12] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, “The One-Dimensional Hubbard Model,” Cambridge Univ. Press, Cambridge, 2005.
[13] J. Quintanilla and C. Hooley, “The strong-correlations puzzle,” Phys. World 22, 32, 2009.
[14] R. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467, 1982.
[15] S. Lloyd, “Universal quantum simulators,” Science 273, 1073, 1996.
[16] I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108, 1009.
[17] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Rev. Mod. Phys. 86, 153, 2014.
[18] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39, 2002.
[19] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, “A Mott insulator of fermionic atoms in an optical lattice,” Nature 455, 204, 2008.
[20] T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, “Quantum simulation of Fermi-Hubbard models in semiconductor quantum-dot arrays,” Phys. Rev. B 78, 075320, 2008.
[21] P. Barthelemy and L. M. K. Vandersypen, “Quantum Dot Systems: a versatile platform for quantum simulations,” Ann. Phys. (Berlin) 525, 808, 2013.
[22] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “Electron transport in quantum dots,” in Mesoscopic Electron Transport, L. Sohn, L. P. Kouwenhoven, G. Schön, Eds., 105-214, NATO ASI Ser. E 345. Kluwer, Dordrecht, 1997.
[23] H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, “Coulomb-blockade oscillations in semiconductor nanostructures,” in Single Charge Tunneling, H. Grabert and M. H. Devoret, Eds., 167-216, NATO ASI Ser. B 294. Plenum, New York, 1992.
[24] U. Meirav and E. B. Foxman, “Single-electron phenomena in semiconductors,” Semicond. Sci. Technol. 11, 255, 1996.
[25] E. Manousakis, “A quantum-dot array as model for copper-oxide superconductors: A dedicated quantum simulator for the many-fermion problem,” J. Low Temp. Phys. 126, 1501, 2002.

Chapter 2
[1] R. Dingle, H. L. Störmer, A. C. Gossard and W. Wiegmann, “Electron mobilities in modulation‐doped semiconductor heterojunction superlattices,” Appl. Phys. Lett. 33, 665, 1978.
[2] C. W. J. Beenakker, H. van Houten, “Quantum transport in semiconductor nanostructures,” in Solid State Physics, H. Ehrenreich, D. Turnbull, Eds., vol. 44, 1-228. Academic Press, San Diego, 1991.
[3] H. L. Störmer, A. Pinczuk, A. C. Gossard and W. Wiegmann, “Influence of undoped (AlGa)As spacer on mobility enhancement in GaAs-(AlGa)As superlattices,” Appl. Phys. Lett. 38, 691, 1981.
[4] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, “One-Dimensional Conduction in the 2D Electron Gas of a GaAs-AlGaAs Heterojunction,” Phys. Rev. Lett. 56, 1198, 1986.
[5] H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, “Gate-controlled transport in narrow GaAs/AlxGa1−xAs heterostructures,” Phys. Rev. B 34, 5635, 1986.
[6] H. van Houten, C. W. J. Beenakker, and B. J. van Wees, “Quantum point contacts,” in Nanostructured Systems, M. A. Reed, Ed., vol. 35, pp. 9-112. Academic Press, San Diego, 1992.
[7] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, J. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “Quantized conductance of point contacts in a two-dimensional electron gas,” Phys. Rev. Lett. 60, 848, 1988.
[8] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, “One-dimensional transport and the quantisation of the ballistic resistance,” J. Phys. C 21, 209, 1988.
[9] B. J. van Wees, L. P. Kouwenhoven, E. M. M. Willems, C. J. P. M. Harmans, J. E. Mooij, H. van Houten, C. W. J. Beenakker, J. G. Williamson, and C. T. Foxon, “Quantum ballistic and adiabatic electron transport studied with quantum point contacts,” Phys. Rev. B 43, 12431, 1991.
[10] M. Büttiker, “Four-terminal phase-coherent conductance,” Phys. Rev. Lett. 57, 1761, 1986.
[11] R. Landauer, “Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction,” IBM J. Res. Dev. 1, 223, 1957.
[12] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “Electron transport in quantum dots,” in Mesoscopic Electron Transport, L. Sohn, L. P. Kouwenhoven, G. Schön, Eds., 105-214, NATO ASI Ser. E 345. Kluwer, Dordrecht, 1997.
[13] H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, “Coulomb-blockade oscillations in semiconductor nanostructures,” in Single Charge Tunneling, H. Grabert and M. H. Devoret, Eds., 167-216, NATO ASI Ser. B 294. Plenum, New York, 1992.
[14] U. Meirav and E. B. Foxman, “Single-electron phenomena in semiconductors,” Semicond. Sci. Technol. 11, 255, 1996.
[15] Y. Nagamune, H. Sakaki, L. P. Kouwenhoven, L. C. Mur, C. J. P. M. Harmans, J. Motohisa and H. Noge, “Single electron transport and current quantization in a novel quantum dot structure,” Appl. Phys. Lett. 64, 2379, 1994.
[16] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109, 1987.
[17] T. Bever, A. D. Wieck, K. v. Klitzing, and K. Ploog, “Lateral tunneling in point contacts,” Phys. Rev. B 44, 3424, 1991.
[18] S. J. Manion, L. D. Bell, W. J. Kaiser, P. D. Maker, and R. E. Muller, “Lateral tunneling through voltage‐controlled barriers,” Appl. Phys. Lett. 59, 213, 1991.
[19] C. A. Neugebauer and M. B. Webb, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74, 1962.
[20] C. W. J. Beenakker, “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot,” Phys. Rev. B 44, 1646, 1991.
[21] Y. Meir, N. S. Wingreen, and P. A. Lee, “Transport through a strongly interacting electron system: Theory of periodic conductance oscillations,” Phys. Rev. Lett. 66, 3048, 1991.
[22] Y. Nagamune, H. Sakaki, L. P. Kouwenhoven, L. C. Mur, C. J. P. M. Harmans, J. Motohisa and H. Noge, “Single electron transport and current quantization in a novel quantum dot structure,” Appl. Phys. Lett. 64, 2379, 1994.
[23] S. Lindemann, T. Ihn, T. Heinzel, W. Zwerger, K. Ensslin, K. Maranowski, and A. C. Gossard, “Stability of spin states in quantum dots,” Phys. Rev. B 66, 195314, 2002.
[24] E. B. Foxman, P. L. McEuen, U. Meirav, Ned S. Wingreen, Yigal Meir, Paul A. Belk, N. R. Belk, M. A. Kastner, and S. J. Wind, “Effects of quantum levels on transport through a Coulomb island,” Phys. Rev. B 47, 10020, 1993.
[25] A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C.J.P.M. Harmans, and C.T. Foxon, “Zero-dimensional states and single electron charging in quantum dots,” Phys. Rev. Lett. 69, 1592, 1992.
[26] K. v. Klitzing, G. Dorda, and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,” Phys. Rev. Lett. 45, 494, 1980.
[27] B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185, 1982.
[28] M. Büttiker, “Absence of backscattering in the quantum Hall effect in multiprobe conductors,” Phys. Rev. B 38, 9375, 1988.
[29] P .L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, N. S. Wingreen, and S. J. Wind, “Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime,” Phys. Rev. B 45, 11419, 1992.
[30] J. M. Kinaret and N. S. Wingreen, “Coulomb blockade and partially transparent tunneling barriers in the quantum Hall regime,” Phys. Rev. B 48, 11113, 1993.
[31] I. K. Marmorkos and C. W. J. Beenakker, “Activated transport through a quantum dot with extended edge channels,” Phys. Rev. B 46, 15562, 1992.
[32] A. K. Evans, L. I. Glazman, and B. I. Shklovskii, “Coulomb blockade in the quantum-Hall-effect state,” Phys. Rev. B 48, 11120, 1993.
[33] N. C. van der Vaart, L. P. Kouwenhoven, M. P. de Ruyter van Steveninck, Y. V. Nazarov, C. J. P. M. Harmans, and C. T. Foxon, “Time-resolved tunneling in the quantum Hall regime,” Phys. Rev. B 55, 9746, 1997.
[34] O. Astafiev, V. Antonov, T. Kutsuwa, and S. Komiyama, “Electrostatics of quantum dots in high magnetic fields and single far-infrared photon detection,” Phys. Rev. B 62, 16731, 2000.

Chapter 4
[1] G. Baym and C. Psthick, Landau Fermi-Liquid Theory: Concepts and Applications. Wiley, New York, 1991.
[2] N. F. Mott, Metal-Insulator Transitions. Taylor and Francis, London, 1990.
[3] J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. Lond. A 276, 238, 1963.
[4] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The One-Dimensional Hubbard Model. Cambridge Univ. Press, Cambridge, 2005.
[5] T. Giamarchi, Quantum Physics in One Dimension. Oxford Univ. Press, Oxford, 2003.
[6] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39, 2002.
[7] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, “A Mott insulator of fermionic atoms in an optical lattice,” Nature 455, 204, 2008.
[8] C. A. Stafford and S. Das Sarmas, “Collective Coulomb blockade in an array of quantum dots: A Mott-Hubbard approach,” Phys. Rev. Lett. 72, 3590, 1994.
[9] T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, “Quantum simulation of Fermi-Hubbard models in semiconductor quantum-dot arrays,” Phys. Rev. B 78, 075320, 2008.
[10] P. Barthelemy and L. M. K. Vandersypen, “Quantum Dot Systems: a versatile platform for quantum simulations,” Ann. Phys. (Berlin) 525, 808, 2013.
[11] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N. Pfeiffe, K. W. West, and V. Pellegrini, “Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice,” Science 332, 1176, 2011.
[12] R. E. Prange and S. M. Girvin, The Quantum Hall Effect. Springer, New York, 1987.
[13] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49, 405, 1982.
[14] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “Electron transport in quantum dots,” in Mesoscopic Electron Transport, L. Sohn, L. P. Kouwenhoven, G. Schön, Eds., 105-214, NATO ASI Ser. E 345. Kluwer, Dordrecht, 1997.
[15] B. Rosenow and B. Halperin, “Influence of Interactions on Flux and Back-Gate Period of Quantum Hall Interferometers,” Phys. Rev. Lett. 98, 106801, 2007.
[16] J. A. Nixon and J. H. Davies, “Potential fluctuations in heterostructure devices,” Phys. Rev. B 41, 7929, 1990.
[17] E. Barnes, J. P. Kestner, N. T. T. Nguyen, and S. Das Sarma, “Screening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots,” Phys. Rev. B 84, 235309, 2011.
[18] M. Stopa, A. Vidan, T. Hatano, S. Tarucha, and R. M. Westervelt, “Electronic structure of multiple dots,” Physica E 34, 616, 2006.
[19] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, “Electrostatics of edge channels,” Phys. Rev. B 46, 4026, 1992.
[20] L. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P. M. Harmans, C. E. Timmering, and C. T. Foxon, “Transport through a finite one-dimensional crystal,” Phys. Rev. Lett. 65, 361, 1990.
[21] M. Leng and C. S. Lent, “Recovery of quantized ballistic conductance in a periodically modulated channel,” Phys. Rev. Lett. 71, 137, 1993.
[22] J. Liu, W. X. Gao, K. Ismail, K. Y. Lee, J. M. Hong, and S. Washburn, “Tunneling between edge states in clean multiple GaAs/AlxGa1−xAs rings and increase of the phase coherence length with magnetic field,” Phys. Rev. B 50, 17383, 1994.
[23] R. J. Haug, J. M. Hong, and K. Y. Lee, “Electron transport through one quantum dot and through a string of quantum dots,” Surf. Sci. 263, 415, 1992.
[24] K. Ismail, W. Chu, A. Yen, D. A. Antoniadis, and H. I. Smith, “Negative transconductance and negative differential resistance in a grid‐gate modulation‐doped field‐effect transistor,” Appl. Phys. Lett. 54, 460, 1989.
[25] Z. Yu, T. Heinzel, and A.T. Johnson, “Conductance and addition spectrum of a 2×2 quantum-dot array in the extended Hubbard model,” Phys. Rev. B 55, 13697, 1997.
[26] G. Klimeck, G. Chen, and S. Datta, “Conductance spectroscopy in coupled quantum dots,” Phys. Rev. B 50, 2316, 1994.
[27] R. Kotlyar, C. A. Stafford, and S. Das Sarma, “Addition spectrum, persistent current, and spin polarization in coupled quantum dot arrays: Coherence, correlation, and disorder,” Phys. Rev. B 58, 3989, 1998.
[28] T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, “Finite Temperature Mott Transition in Hubbard Model on Anisotropic Triangular Lattice,” Phys. Rev. Lett. 100, 076402, 2008.

Chapter 5
[1] R. E. Prange and S. M. Girvin, The Quantum Hall Effect. Springer, New York, 1987.
[2] B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Phys. Rev. B 25, 2185, 1982.
[3] J. E. Avron, D. Osadchy, R. Seiler, “A topological look at the Quantum Hall effect,” Phys. Today 56, 38, 2003.
[4] X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057, 2011.
[5] S. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, “Violation of the integral quantum Hall effect: Influence of backscattering and the role of voltage contacts,” Phys. Rev. B 40, 12566, 1989.
[6] P. L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kastner, N. S. Wingreen, and S. J. Wind, “Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime,” Phys. Rev. B 45, 11419, 1992.
[7] B. W. Alphenaar, A. A. M. Staring, H. van Houten, M. A. A. Mabesoone, O. J. A. Buyk, and C. T. Foxon, “Influence of adiabatically transmitted edge channels on single-electron tunneling through a quantum dot,” Phys. Rev. B 46, 7236, 1992.
[8] B. Rosenow and B. I. Halperin, “Influence of Interactions on Flux and Back-Gate Period of Quantum Hall Interferometers,” Phys. Rev. Lett. 98, 106801, 2007.
[9] J. C. Chen, A. M. Chang, and M. R. Melloch, “Transition between Quantum States in a Parallel-Coupled Double Quantum Dot,” Phys. Rev. Lett. 92, 176801, 2004.
[10] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, “Coherent Coupling of Two Quantum Dots Embedded in an Aharonov-Bohm Interferometer,” Phys. Rev. Lett. 87, 256802, 2001.
[11] M. L. Ladrón de Guevara, F. Claro, and Pedro A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B 67, 195335, 2003.
[12] L. P. Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P. M. Harmans, C. E. Timmering, and C. T. Foxon, “Transport through a finite one-dimensional crystal,” Phys. Rev. Lett. 65, 361, 1990.
[13] Y. Zhang, D. T. McClure, E. M. Levenson-Falk, C. M. Marcus, L. N. Pfeiffer, and K. W. West, “Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers,” Phys. Rev. B 79, 241304, 2009.
[14] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, “Electron transport through double quantum dots,” Rev. Mod. Phys. 75, 1, 2002.
[15] U. Meirav and E. B. Foxman, “Single-electron phenomena in semiconductors,” Semicond. Sci. Technol. 11, 255, 1996.
[16] C. W. J. Beenakker, “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot,” Phys. Rev. B 44, 1646, 1991.
[17] Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience. Cambridge Univ. Press, Cambridge, 2009.
[18] D. V. Averin and K. K. Likharev, “Single electronics: A correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions,” in Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, Eds., 173-270. Elsevier, Amsterdam, 1991.
[19] B. Kubala and J. Köni, “Flux-dependent level attraction in double-dot Aharonov-Bohm interferometers,” Phys. Rev. B 65, 245301, 2002.
[20] G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, “Observation of the Aharonov-Bohm effect for ωcτ>1,” Phys. Rev. Lett. 58, 2814, 1987.
[21] P. M. Mankiewich, R. E. Behringer, R. E. Howard, A. M. Chang, T. Y. Chang, B. Chelluri, J. Cunningham and G. Timp, “Observation of Aharonov–Bohm effect in quasi‐one‐dimensional GaAs/AlGaAs rings,” J. Vac. Sci. Technol. B 6, 131, 1988.
[22] U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866, 1961.
[23] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Tuning of the Fano Effect through a Quantum Dot in an Aharonov-Bohm Interferometer,” Phys. Rev. Lett. 88, 256806, 2002.
[24] A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot,” Phys. Rev. Lett. 93, 106803, 2004.
[25] J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, Hadas Shtrikman, D. Mahalu, and U. Meirav, “Fano resonances in electronic transport through a single-electron transistor,” Phys. Rev. B 62, 2188, 2000.
[26] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, “Mesoscopic Fano effect in a quantum dot embedded in an Aharonov-Bohm ring,” Phys. Rev. B 68, 235304, 2003.
[27] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, “Phase measurement in a quantum dot via a double-slit interference experiment,” Nature 385, 417, 1997.
[28] H. Lu, R. Lü, and Bang-fen Zhu, “Tunable Fano effect in parallel-coupled double quantum dot system,” Phys. Rev. B 71, 235320, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文