跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建璁
研究生(外文):Chen, Jian-Tsung
論文名稱:線型雷射光束成型模組於口內齒模掃描裝置之設計與應用研究
論文名稱(外文):The Application and Design of Line Laser Beam Shaping Module for Intra-Oral Scanner
指導教授:曹哲之
指導教授(外文):Tsao, Che-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:114
中文關鍵詞:口內掃描光束整型線型雷射光束
外文關鍵詞:intra-oralbeam shapingline laser beam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
數位齒科膺復的市場需求正在逐年成長之中。電腦輔助設計/電腦支援製造(CAD/CAM)齒雕系統是利用口內光學齒模掃描儀取模,並配合軟體3D牙體設計與調整修復,而後將此掃描與重建之齒列形貌的數位檔案遠端傳送至五軸CNC牙雕加工機台進行自動化加工,變成實體化的膺復成品。不但過程迅速、準確,也能夠消弭傳統手工取模對於病患造成的不舒適感與印模材料的不準確性。而其中口內齒模掃描裝置成為取模之關鍵硬體設備。其功能是以一雷射光源並配合光束整型裝置,投射出一線型或其他型式之結構光於齒列上,並利用馬達配合傳動機構使結構光進行前後往覆地掃描作動,而後由CMOS取像系統擷取反射自齒列且因齒列形貌變化而扭曲之線光束,量測齒模曲面及取得齒模表面點資訊並經由背後演算法之計算,於人機介面中建置和即時顯示掃描之齒模三維輪廓。
為求取得之扭曲線型圖案能精確重建齒列的形貌,該線型光束之品質在線長、線寬、聚焦深度與均勻度等,均須滿足規格要求。而本論文之研究主題即在設計並評估各類雷射線型光束整型系統應用於手持式口內掃描裝置的可行性、實用性與商品性,研究的範疇屬於應用性之設計分析類型。
目前現有之線型結構光束之光學整型系統其相關技術主要有三類型,包括折射式、反射式,和繞射式。本研究所提出之設計方法分別為折射式與繞射式。折射式光束整型是利用光經過透鏡因其折射率和表面曲率所造成之光路偏折,以達到光束整型的效果。在設計上其系統組成皆選用標準光學元件,也因為架構相對簡易,面對不同的規格變化其調整彈性度高;繞射式元件是利用波傳遞特性將入射光場進行相位的調變,藉此改變光場的分佈。本研究採用一純相位調變型的矽基液晶(LCoS)空間光調制器作為動態線型結構光干涉圖像之記錄,將一併整合光束整型系統以及動態掃描機制,未來有機會作為口掃裝置愈加微型化發展之基礎。整型成線型光束圖像所需之相位分佈資訊透過電腦全像技術,以疊代傅立葉演算法(Iterative Fourier Transform Algorithm)計算得出。此外,將針對連續之相位分佈作階梯化結構近似,同時對分階之相位作優化處理以降低階梯化所導致的相位失真,以及實驗量測、分析比較在不同階梯化程度下之光束表現,並可作為未來若將送件製造成浮雕結構之靜態穿透式繞射元件之前的預期結果驗證和先期評估。

Market of digital dentistry is growing fast in recent years. Dental CAD/CAM system uses an intra-oral scanner to acquire the digital surface profile of the teeth, which is also called digital impression, and modify or design a 3D dental model with the simulation software. After the contour of the teeth is scanned, send the digital files to the following CAD/CAM process of making artificial teeth like a 5-axis CNC milling machine for the dental restoration. The digital impression method not only has the advantages of less required scanning time, high scanning accuracy, but also can ease the discomfort or distress of patients who undergo the dental impression. The intra-oral scanner is especially the key hardware for taking the digital impression. A commonly used approach is to project a line laser beam on the teeth and make the laser beam move back and forth with the assembled scanning mechanism. The image sensor detects and reconstructs the real-time 3D teeth profile from the distortion of the reflected line beam image with the algorithm behind.
In order to acquire the accurate teeth model detected from the distorted line laser beam pattern, the quality of the line laser beam is supposed to meet the requirement in beam length, beam width, depth of focus, uniformity, etc. The topic of my thesis is to design some different kinds of laser module that generates a line laser beam and evaluate the possibility, applicability and commercialization of the laser module for the application of the intra-oral scanner.
Currently there are several kinds of line laser beam shaping systems widely used, including refractive beam shapers, reflective beam shapers, diffractive beam shapers, etc. The research proposed designs containing both the refractive line laser beam shaper and the diffractive line laser beam shaper. A refractive beam shaper utilizes the refraction property, which happens when the light propagates through an optical lens because of the refractive index and the curvature of the lens, so as to have a laser beam shaped into a laser stripe. Each component of the refractive beam shaper is availably selected. Since the embodiment is relatively simple, it is flexible to adjust its configuration for different design requirements. The diffractive optical elements provide the incident light waves with the phase modulation to redistribute the light field. The research utilize a pure phase type liquid crystal on silicon (LCoS) SLM as the holographic recording of the interference pattern of dynamic line laser beam (object beam) and reference beam. The LCOS-SLM projective system is able to combine the function of line laser beam shaping with the one of scanning. Therefore, there will be a potential to minimize much more the volume of the intra-oral scanner. The required phase distribution information for generating a line laser beam pattern, called hologram, can be obtained by computer generated holography technique and calculated by the iterative Fourier transform algorithm. In addition, quantize and optimize the acquired continuous phase distribution into several levels, as well as analyze the performance of the line laser beam in different levels. The results can be treated as an evaluation for manufacturing the diffractive optical elements.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 研究背景與現況 1
1.2 研究動機 2
1.3 研究目的 4
第二章 文獻回顧 5
2.1 口內齒模掃描裝置文獻回顧 5
2.1.1 Trios 3Shape 5
2.1.2 Zfx MHT 11
2.1.3 CADENT iTero 12
2.1.4 E4D by D4D Technologies 14
2.1.5 Sirona CEREC-Bluecam 16
2.1.6 Conoscopic Holographic Intraoral Imaging System 17
2.2 雷射光束整型文獻回顧 19
2.2.1 光罩式光束整型元件 19
2.2.2 反射式光束整型元件 20
2.2.3 折射式光束整型元件 21
2.2.4 繞射式光束整型元件 23
第三章 研究相關光學理論介紹 27
3.1 幾何光學之基礎理論 28
3.1.1 基本定律 28
3.1.2 光線追跡 29
3.2 繞射光學之基礎理論 32
3.2.1 純量繞射理論 32
3.2.2 亥姆霍茲與克希荷夫積分理論 34
3.2.3 瑞利-索末菲繞射公式 36
3.2.4 近場菲涅爾與遠場夫朗和費繞射 38
第四章 折射式線型光束整型元件之系統設計 41
4.1 紅光折射式光束整型系統 42
4.1.1 研究方法 42
4.1.2 系統架構設計與模擬分析 46
4.1.3 實行成果與實驗量測 51
4.2 藍光折射式光束整型系統 54
4.2.1 設計流程方法 55
4.1.3 系統架構及模擬表現分析 59
4.2.4 實行成果與實驗量測 65
第五章 繞射式線型光束整型元件之系統設計 69
5.1 繞射元件設計原理介紹 69
5.1.1 電腦全像術 71
5.1.2 疊代傅立葉演算法 72
5.1.3 二元光學 74
5.1.4 相位量化 76
5.2 LCoS繞射式線型光束整型元件設計 77
5.2.1 研究執行方法 77
5.2.2 材料元件使用 79
5.2.3系統架構及模擬表現分析 81
5.2.4 繞射線光束於相位階梯化下之實行成果與實驗量測 89
5.2.5 LCoS繞射式線型光束動態掃描實行成果 93
第六章 結論與未來工作 95
參考文獻 96

[1] http://keygroupresearch.com/Dental-Laboratory-Market-Assessment-Trends-report.php, U.S. Dental Laboratory Market Assessment and Trends Report, the Key Group
[2] http://www.dentalproductsreport.com/lab/article/digital-dentistry-connection-between-dental-labs-dentists, Digital Dentistry: The connection between dental labs, dentists, DENTAL PRODUCTS REPORT
[3] http://mrg.net/Products-and-Services/Syndicated-Report.aspx?r=RPGL22CC12, Global Markets for Dental CAD/CAM Systems 2012, Millennium Research Group
[4] http://www.dentaleconomics.com/articles/print/volume-102/issue-1/features/why-digital-impressions.html, DENTAL ECONOMICS, Why Digital Impressions?
[5] http://sidekickmag.com/dental-practice-management/tips-from-the-top/, Sidekick, Tips from the Top
[6] http://www.medicalexpo.com/prod/sirona-dental-systems/product-70662-470832.html, Medical EXPO, Sirona Dental Systems
[7] http://www.biolase.com/Pages/3D-Intraoral-Scanners.aspx, BIOLASE, 3D Intraoral Scanners
[8] R. Fisker et. al, “Focus Scanning Apparatus” US patent 20120092461 A1
[9] http://surevision.com.tw/productaa01001.htm, 肯定資訊科技有限公司,機器視覺專用鏡頭系列
[10] http://www.olympus-ims.com/zh/knowledge/metrology/lext_principles/basic/, OLYMPUS, Principles of Laser Scanning Microscopes
[11] M. Berner, “Device for tomographic scanning objects” US patent 20090103103 A1
[12] D. M. Meadows, W. O. Johnson, and J. B. Allen, “Generation of Surface Contours by Moire’ Patterns,” Applied Optics, 9(4), 942-947(1970)
[13] K. Creath, J. C. Wyant, “Moiré and Fringe Projection Techniques” Chap. 16 in Optical Shop Testing Edited by Daniel Malacara, 2nd Ed., John wiley & Son Inc., 1992
[14] N. Babayoff , “Method for providing data associated with the intraoral cavity” US patent 7698068 B2
[15] A. Tchouprakov et. al, “Intra-oral scanning device with illumation frames interspersed with image frames”
[16] J. B. Grabulosa, E. M. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey” Pattern Recognition, Vol. 31, No. 7, pp. 963-982, 1998
[17] https://en.wikipedia.org/wiki/3D_scanner, Wikipedia, 3D scanner
[18] V. Schmidt, “3D dental camera for recording surface structures of an object be measured by means of triangulation” US patent 20110242281 A1
[19] G. Y. Sirat, D. Psaltis, “Conoscopic Holography” Opt. Lett 1985, 10, 4–6
[20] G. Y. Sirat, “Intraoral imaging system and method based on conoscopic holography” US patent 20090231649 A1
[21] http://www.optimet.com/our_technology.php, Optimet, Our Technology
[22] F. M. Dickey at all, Laser Beam Shaping Applications (Taylor & Francis, 2006), Chap. 8
[23] N. Bokor, N. Davidson, “Anamorphic, adiabatic beam shaping of diffuse light using a tapered reflective tube”, Optics Communications 201, 243-249, 2002
[24] C. H. Chen, C. C. Chen, and W. C. Liang, “Light Pipe Line Beam Shaper” OPTICAL REVIEW Vol. 14, No. 4, 231–235 (2007)
[25] Y. Kudo, K. Matsumoto, “Illuminating Optical Device” US patent 4918583 A
[26] http://www.optenso.com/optix/ex_pipe.html, Optenso™, Light Pipe, Step Index Fiber
[27] S Zhang, “A simple bi-convex refractive laser beam shaper” Journal of Optics A: Pure and Applied Optics 9 (2007) 945-950
[28] J. A. Hoffnagle, C. M. Jefferson, “Reflective optical system that converts a laser beam to a collimated flat-top beam” US patent 6295168 B1
[29] D. L. Shealy, S. H. Chao, “Geometric optics-based design of laser beam shapers” Opt. Eng. 42(11) 3123-3138 (Nov. 2003)
[30] F. M. Dickey, L. S. Weichman and R. N. Shagam
"Laser beam shaping techniques", Proc. SPIE 4065, High-Power Laser Ablation III, 338 (2000)
[31] F. Cayer, “Rectangular flat-top beam shaper” US patent 7400457 B1
[32] D. K. Fork, “Narrow-pitch beam homogenizer” US patent 5699191
[33] http://www.silios.com/#!diffractive-optics/c18ti, SILIOS Technologies
[34] http://www.onset.com.tw/product_details.php?cde=PDT50c59afd19afd, 銓州光電股份有限公司
[35] T. Kajava et. al, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings” Optics Communications 268 (2006) 289-293
[36] J. S. Liu, M. R. Taghizadeh, “Iterative algorithm for the design of diffractive phase elements for laser beam shaping” Optics Letters, Vol.27 No.16 1463-1465 (2002)
[37] C. Dorrer, “High-damage-threshold beam shaping using binary phase plates” Optics Letters, Vol.34 No.15 2330-2332 (2009)
[38] Z. Zalevsky et. al, “Optical system and method for use in projection systems” US patent 20070273957 A1
[39] F. M. Dickry, S. C. Holswade, “Gaussian laser beam profile shaping” Opt. Eng. 35(11) 3285-3295 (Nov. 1996)
[40] T. Dresel, M. Beyerlein, J. Schwider, “Design and fabrication of computer-generated beam-shaping holograms” Applied Optics, Vol.35 No.23 (1996)
[41] T. Dresel, M. Beyerlein, J. Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption” Applied Optics, Vol.35 No.35 (1996)
[42] https://www.itrc.narl.org.tw/Research/Product/Nano/doe.php, 平頂光束整型繞射光學元件,國家實驗研究院儀器科技研究中心
[43] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 2007), Chap. 1
[44] http://en.wikipedia.org/wiki/Diffraction, Diffraction, Wikipedia
[45] J. W. Goodman, Introduction to Fourier optics (Roberts & Company, 2005), Chap. 3, 4
[46] https://www.maxmax.com/spectral_response.htm, LDP LLC MaxMax.com, Spectral Response
[47] L. Zhang, L. Y. Nelson, J. H. Berg, and E. J. Seibel, “Spectrally enhanced image resolution of tooth enamel surfaces”, Proc. SPIE 8208, Lasers in Dentistry XVIII, 82080F
[48] http://en.wikipedia.org/wiki/Holography, Holography, Wikipedia
[49] F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography”, J. Opt. Soc. Am. A 5, 1058–1065 (1988)
[50] R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures”, Optik 35(2), 237-246 (1972)
[51] V. A. Soifer, Method for computer design of diffractive optical elements (Wiley, 2002), Chap. 2
[52] M. W. Farn, W. B. Veldkamp, Binary optics, Handbook of optics Vol.1, Chap.23
[53] I. Naydenoca, Advanced holography - Metrology and imaging, Chap.13.
[54] https://www.zemax.com/support/knowledgebase/how-diffractive-surfaces-are-modeled-in-zemax, How Diffractive Surfaces are Modeled in Zemax, Zemax
[55] F. Wyrowski, “Diffractive optical elements: Iterative calculation of quantized blazed phase structures”, J. Opt. Soc. Am. A 7, 961-969 (1990)
[56] F. Wyrowski, “Iterative quantization of amplitude holograms”, Appl. Opt. 28(18), 3864-3870 (1989)
[57] W. F. Hsu, “Backward iterative quantization methods for design of multilevel diffractive optical elements”, Opt. Express 13, 5052-5063 (2005)
[58] 廖俐媛,「相位調變矽基液晶空間光調制器之量測與動態全像之應用研究」,國立清華大學動力機械工程學系,碩士論文,中華民國102年

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top