# 臺灣博碩士論文加值系統

(44.201.92.114) 您好！臺灣時間：2023/03/31 11:34

:::

### 詳目顯示

:

• 被引用:0
• 點閱:217
• 評分:
• 下載:27
• 書目收藏:0
 影像切割(image segmentation)問題的目標通常是把一張輸入影像切割成許多不同的區域。大致上而言，影像切割的問題通常可視為標籤決定問題並且根據每一個像素的特徵標示不同的標籤。在此篇論文中，我們會提出一個監督式和互動式的影像切割演算法。 在我們的方法中，我們建構一個由超向素(superpixel)層與高階層所組成的圖解模型。超像素層是由過度切割區域的區域稱為超像素所組成的，高階層則是由邊緣偵測的結果與過度切割的區域所構成的。接下來我們使用建構的圖解模型並且使用隨機漫步演算法來找出每個超像素最大機率的標籤值。我們所提出的方法在自然影像中跟其他常見方法比較下有非常滿意的結果。
 The purpose of image segmentation problem is to separate some areas from the input image. In general, image segmentation can be consider as a label decision problem which assign different labels to every pixel according to its features. In this paper, we propose a supervised and interactive image segmentation algorithm. In our approach, we construct a new graph model which consists of a super-pixel layer and a high order layer. The super-pixel layer is composed by over-segmentation regions called superpixels and the high-order layer is generated by combining edge detection and these over-segmentation regions. Then we construct a graph model and use a random walk algorithm to find the maximum probability label value for each superpixel. The proposed method shows very satisfactory results for some natural images and compares to some conventional methods.
 Chapter 1 IntroductionChapter 2 Related workChapter 3 Proposed Method3.1 The super-pixel layer3.2 The high-order layer3.3 Construct Graph3.4 The Random walker based on superpixelsExperimentConclusionReference
 [1] Tae Hoon Kim; Kyoung Mu Lee ; Sang Uk Lee. “Nonparametric Higher-Order Learning for Interactive Segmentation.” In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference , pp. 3201 – 3208 , 2010 June 13-18.[2] Tae Hoon Kim ; Kyoung Mu Lee ; Sang Uk Lee . “Generative Image Segmentation Using Random Walks with Restart.” In European Conference on Computer Vision , 2008 October.[3] Achanta, R. ; Shaji, A.; Smith, K.; Lucchi, A. ; Fua, P. ; Süsstrunk, S. “SLIC Superpixels Compared to State-of-the-art Superpixel Methods.” In Pattern Analysis and Machine Intelligence, IEEE Transactions, pp. 2274 – 2282 ,2012 April.[4] Dollar, P. ; Zitnick, C.L. “Structured Forests for Fast Edge Detection” In Computer Vision (ICCV), 2013 IEEE International Conference pp. 1841 – 1848 2013 December.[5] Comaniciu, D. ; Meer, P. “Mean Shift: A Robust Approach Toward Feature Space Analysis” Pattern Analysis and Machine Intelligence, IEEE Transactions , pp. 603 – 619 2002 May.[6] Kanungo, Tapas ; Mount, D.M. ; Netanyahu, N.S. ; Piatko, C.D. ; Silverman, R. ; Wu, A.Y.” An Efficient k-Means Clustering Algorithm:Analysis and Implementation” In Pattern Analysis and Machine Intelligence, IEEE Transactions , pp. 881 – 892 2002 July.[7] Chuan Yang ; Lihe Zhang ; Huchuan Lu ; Xiang Ruan ; Ming-Hsuan Yang “Saliency Detection via Graph-Based Manifold Ranking” In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference , pp. 3166 – 3173 ,2013 June.[8] Boykov, Y. ; Veksler, O. ; Zabih, R.” Fast Approximate Energy Minimization via Graph Cuts” In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference , pp. 377 – 384 ,1999 September.[9] Grady, L. ” Random Walks for Image Segmentation” In Pattern Analysis and Machine Intelligence, IEEE Transactions pp. 1768 – 1783 ,2006 September.[10] Kass, M., Witkin, A., Terzopoulos, D. “Snakes: Active contour models.” In Internation Journal of Computer Vision, V1 pp.321-331 ,1988.[11] Mortensen, E.N., Barrett, W.A.: “Interactive segmentation with intelligent scissors.” Graphical Models in Image Process. 60(5), 349–384 (1998)[12] Levinshtein, A., Stere, A. ; Kutulakos, K.N. ; Fleet, D.J. ; Dickinson, S.J. ; Siddiqi, K.”TurboPixels: Fast Superpixels Using Geometric Flows.” In Pattern Analysis and Machine Intelligence, IEEE Transactions pp. 2290 – 2297, 2009 March.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 使用散焦圖及超像素群組方法進行非監督影像分割 2 利用顯著區域和邊界偵測的非監督式前景分割 3 多焦距影像融合方法使用全面性取樣 4 使用顯著性檢測和邊緣檢測自動標分割 5 基於合作賽局的多類影像共分割方法 6 使用模糊影像顏色調色盤進行影像分割方法 7 基於兩階段局部線性插入與夏普利值的單張影像之超解析度方法 8 基於顯著圖和暗顏色先驗的非監督式影像切割 9 基於文字影像高對比灰階性質的去模糊方法 10 利用多標籤圖形切割的非監督式影像分割 11 利用多個先驗條件進行兩階段去模糊 12 利用邊緣偵測和賽局理論圖形切割的非監督式前景分割 13 自動導引之互動式分割 14 利用文字影像雙色性質以及梯度性質的 去模糊方法 15 影像語意切割透過對中層特徵之迭代整合網路

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室