|
[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” IJCV, 2004. [2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in CVPR, 2005. [3] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, multiscale, deformable part model,” in CVPR, 2008. [4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in NIPS, 2012. [5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A largescale hierarchical image database,” in CVPR, 2009. [6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in CVPR, 2014. [7] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” PAMI, 2012. [8] R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Ten years of pedestrian detection, what have we learned?,” in ECCV, CVRSUAD workshop, 2014. 38 [9] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision system for robust multi-person tracking,” in CVPR, 2008. [10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in CVPR, 2012. [11] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features.,” in BMVC, 2009. [12] J. Hosang, M. Omran, R. Benenson, and B. Schiele, “Taking a deeper look at pedestrians,” CVPR, 2015. [13] R. Benenson, M. Mathias, T. Tuytelaars, and L. Van Gool, “Seeking the strongest rigid detector,” in CVPR, 2013. [14] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian detection with unsupervised multi-stage feature learning,” in CVPR, 2013. [15] W. Ouyang and X. Wang, “A discriminative deep model for pedestrian detection with occlusion handling,” in CVPR, 2012. [16] W. Ouyang, X. Zeng, and X. Wang, “Modeling mutual visibility relationship in pedestrian detection,” in CVPR, 2013. [17] W. Ouyang and X. Wang, “Joint deep learning for pedestrian detection,” in ICCV, 2013. [18] P. Luo, Y. Tian, X. Wang, and X. Tang, “Switchable deep network for pedestrian detection,” in CVPR, 2014. 39 [19] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Computer Science Department, University of Toronto, Tech. Rep, 2009. [20] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” IJCV, 2013. [21] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?,” in CVPR, 2010. [22] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from edges,” in ECCV, 2014. [23] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized normed gradients for objectness estimation at 300fps,” in CVPR, 2014. [24] W. Ouyang and X. Wang, “Single-pedestrian detection aided by multi-pedestrian detection,” in CVPR, 2013. [25] X. Zeng, W. Ouyang, and X. Wang, “Multi-stage contextual deep learning for pedestrian detection,” in ICCV, 2013. [26] Z. Zhang, J. Warrell, and P. H. Torr, “Proposal generation for object detection using cascaded ranking svms,” in CVPR, 2011. [27] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, 2006. [28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014. 40 [29] H. Larochelle and Y. Bengio, “Classification using discriminative restricted boltzmann machines,” in ICML, 2008. [30] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” in CVPR, 2009. [31] W. Nam, P. Dollár, and J. H. Han, “Local decorrelation for improved pedestrian detection,” in NIPS, 2014.
|