跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾承珊
研究生(外文):Chung, Cheng Shan
論文名稱:應用覆晶技術於64 × 64氮化鎵行列選址式微型發光二極體陣列上
論文名稱(外文):Flip-Chip bonding for 64 × 64 Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array
指導教授:吳孟奇何充隆
指導教授(外文):Wu, Meng ChyiHo, Chong Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:氮化鎵微型發光二極體陣列覆晶技術
外文關鍵詞:GaNmicro-LED arrayFlip-chip bonding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微型發光二極體已逐漸成為極具商業潛力的元件,整合多樣功能性模組可應用於微影像顯示、微投影器、無光罩微影(Mask-free Photolithography)、光驅基因工程(Optogenetics)等領域。而本研究以開發圖像顯示用單石化(Monolithic)微型發光二極體(LED)陣列及其相關製程技術為目的,研製藍光微型LED 陣列,其重點在於克服因微型化所衍生之電阻與邊緣效應,抑制陣列畫素間之光互擾(Optical Crosstalk),並提升光萃取效率與改善散熱而引入的覆晶鍵合技術,皆為了尋求製程技術的精進以提升陣列元件之畫素良率與均勻度。最終實現一覆晶式64 × 64 之行列選址式(Row-Column-Addressed)微型LED陣列,其在100 uA (25 A/cm2) 下之啟動電壓為2.89 V,逆偏漏電流在-5 V之下為41.62 pA,光輸出功率在電流100 μA (25 A/cm2)、20 mA (5 kA/cm2)下可各達9.5 μW、0.42 mW。
由於藍寶石基板的低熱傳導性質及絕緣特性,覆晶技術對陣列元件有絕對助益,更可使微型LED 陣列作為多用途基底,提升產品效益。考量未來主流應用於高密度陣列畫素與大陣列尺寸,本研究使用銦凸塊為起點,建立高6 μm銦凸塊製程技術,於適當蒸鍍參數下,歸納出凸塊面積與高度之關係;並發展出適當之覆晶鍵合、底填程序及參數,且以串聯迴路之測試結構確認接合良率可達100 %,單點接合電阻為0.3 Ω,最後加入底填技術加強覆晶類型元件。以此研究成果為根基,未來將實現高畫素陣列,提升產品水平,銜接漸趨成長之可攜式微型投影市場,拓展LED 產值。

Recently, the micro-light-emitting diode has become a potential commercial device, which is integrated with functional module for widely applications, such as micro-display, micro-projector, mask-free photolithography, and optogenetics. In this research, a monolithic 450 nm GaN-based 64 × 64 micro-light-emitting diode arrays (μLEDA) with flip-chip bonding is demonstrated. To realize a high-quality μLEDA, this research has to deal with issues raised by area shrinkage and arrayed emitters. Area shrinkage results in increased series resistance and enhanced perimeter effect, while arrayed emitters result in optical crosstalk. Furthermore, the flip-chip boning technology is introduced for enhancing the extraction efficiency and improving heat dissipation. Underfilling is also added to the process to improve the stability of the devices. We delve into these problems and find appropriate countermeasures to raise the yield and uniformity of the μLEDA. The operation voltage at 100 μA (25 A/cm2) and leakage current at -5 V are 2.89 V and 41.62 pA, respectively. And the output power at 100 μA (25 A/cm2) and 20 mA (5 kA/cm2) could be achieved to 9.5 μW and 0.42 mW, respectively.
In order to develop applications of active-matrix of μLEDA in the future, the flip-chip bonding technology must be investigated. In this thesis, we evaporated 6 μm-thick indium bumps and induced the relationship between the bump area and height. The bonding process is optimized by varying bonding force, temperature and time. The 120 × 120 indium bumps array is fabricated, which includes the daisy chains design for examining each of contact resistance is about 0.3 Ω and the yield is up to 100%.
In summary, 450 nm GaN-based 64 × 64 μLEDA with flip chip bonding is demonstrated in this thesis. We believed that these technologies play an important role to make μLEDA be a potential candidate for portable micro-projector with lowest power consumption.

中文摘要.................................................I
ABSTRACT...............................................II
誌謝..................................................III
CONTENTS...............................................IV
LIST OF FIGURES........................................VI
LIST OF TABLES..........................................X
Chapter 1. Introduction.................................1
1-1 Development of III-nitride-based micro light emitting diodes..................................................1
1-2 Flip-chip technology................................3
1-3 Research motivation and purpose.....................4
Chapter 2. Backgrounds..................................7
2-1 Light emitting diode basis: electrical properties...7
2-2 Light emitting diode basis: optical properties......9
2-3 Theory of current spreading layer..................10
2-4 Flip-chip packaging basis..........................11
2-5 Daisy chain testing................................14
2-6 Characterization instruments.......................15
2-6-1 Current-voltage (I-V) characteristic measurement system.................................................15
2-6-2 Electroluminescence (EL) measurement system......16
2-6-3 Light output power-current (L-I) measurement.....17
2-7-4 Divergence angle measurement system..............19
Chapter 3. μLEDA Device Structure and Fabrications.....21
3-1 Epitaxial structure design concept.................21
3-2 The design of Masks................................21
3-3 Experiment process of 64 × 64 μLEDA................24
3-4 Experimental process of daisy chain test...........33
Chapter 4. Characteristic of micro-LED array and investigation of indium bump...........................37
4-1 Passive matrix of 64 × 64 blue micro-LED array.....37
4-1-1 I-V characteristics analysis of blue μLEDA.......40
4-1-2 Electroluminescence (EL) spectrum of blue μLEDA..47
4-1-3 Light output power-current (L-I) of blue μLEDA...49
4-1-4 Divergence angle of blue μLEDA...................50
4-1-5 Demonstration....................................51
4-2 Indium bump investigation for flip chip bonding....51
4-2-1 Relation between the indium bump area and height.52
4-2-2 The underfill test...............................55
4-2-3 The bonding condition and resistance test........56
Chapter 5. Conclusions.................................63
References.............................................64

[1] E. F. Schubert, “Light-Emitting Diodes” (Cambridge Univ Pess),
www.LightEmittingDiodes.org.
[2] http://www.samsung.com/pe/consumer/mobile-devices/smartphones/others/GT-I8530BALPET
[3] http://www.himaxdisplay.com/en/product/info.asp
[4] http://www.dlp.com/technology/default.aspx
[5] C. W. Jeon, E. Gu and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett., 86, 221105, 2005.
[6] D. Elfström, B. Guilhabert, J. McKendry, S. Poland, Z. Gong, D. Massoubre, E. Richardson, B. R. Rae, G. Valentine, G. Blanco-Gomez, E. Gu, J. M. Cooper, R. K. Henderson and M. D. Dawson, “Mask-less ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes,” Opt. Express, vol. 17, no. 26, pp.23522-23529, 2009.
[7] R. H. Horng, and Y. W. Kuo, “Process development of GaN light emitting diodes with imbedded contacts,” Proc. of SPIE Vol. 8484 848406-1, 2012.
[8] 1. P. A. Totta and R. P. Sopher, “SLT device metallurgy and its monolithic extension,” IBM journal of research and development, May 1969, pp. 226-238.
[9] Z. Gong, E. Gu, S. R. Jin, D. Massoubre, B. Guilhabert, H. X. Zhang, M. D. Dawson, V. Poher, G. T. Kennedy, P. M. W. French and M. A. A. Neil,” Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion,” J. Phys. D: Appl. Phys. 41 (2008) 094002 (6pp).
[10] C. C. An, M. H. Wu, Y. W. Huang, T. H. Chen, C. H. Chao, W. Y. Yeh, “Study on flip chip assembly of high density micro-LED Array,” microsystems, IMPACT, 2011 6th International.
[11] Z. Y. Fan, J. Y. Lin and H. X. Jiang, “III-nitride micro-emitter arrays: development and applications,” J. Phys. D: Appl. Phys. 41, 094001, 2008.
[12] H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Exp., vol. 16, no. 13, pp. 9918-9926, 2008.
[13] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin and H. X. Jiang, “Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays,” Proc. of SPIE, vol. 8268, 82681X, 2012.
[14] Thompson G.H.B., "Physics of semiconductor laser devices," New York, pp. 572 (1980).
[15] http://flipchips.com/
[16] J. E. Clayton, “Very high pin count flip chip assembly using conductive polymer adhesives,” Boston, MA. IMAPS 2003.
[17] Ken Gilleo, Area Array Packaging Handbook: Manufacturing and Assembly, 1st ed, McGraw-Hill Professional, 2001, chapter 18.
[18] S. Cihangir, S. Kwan, “Characterization of indium and solder bump bonding for pixel detectors,” Nuclear Instruments and Methods in Physics Research A 476 (2002) 670–675.
[19] J. Z. Liu, D. B. Charlton, C. H. Lin, K. Y. Lee, C. Krishnan, and M. C. Wu, “Efficiency improvement of blue LEDs using a GaN burried air void photonic crystal with high air filling fraction,“ IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 5, MAY 2014.
[20] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Jpn. J. Appl. Phys., vol. 36, pp. 1059-1061 (1997).
[21] C. W. Jeon, H. W. Choi, E. Gu, and M. D. Dawson, Senior Member, IEEE, ”High-density matrix-addressable AlInGaN-based 368-nm microarray light-emitting diodes,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 11, NOVEMBER 2004.
[22] S. J. Chang, C. S. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, W. S. Chen, C. F. Shen, Y. P. Hsu, S. C. Shei, and H. M. Lo, “Nitride-based flip-Chip ITO LEDs,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 2, MAY 2005.
[23] Y. C. Lin, S. J. Chang a,*, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo , S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electronics 47 (2003) 849–853.
[24] Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN lightemitting diodes,” JOURNAL OF APPLIED PHYSICS 107, 013103 (2010).
[25] P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” JOURNAL OF APPLIED PHYSICS 115, 033112 (2014).
[26] Basavanhally, N. Lucent Technol., Murray Lopez D. , Aksyuk V. , Ramsey D. , Bower E. , Cirelli R. , Ferry E. , Frahm R. , Gates J. , Klemens F. , Lai W. , Low Y. , Mansfield W. , C. S. Pai, Papazian R. , Pardo F. , Sorsch T. , Watson Pat, “High-Density Solder Bump Interconnect for MEMS Hybrid Integration,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 30, NO. 4, NOVEMBER 2007.
[27] Y. Li, R. W. Johnson, P. Thompson, T. Hooghan and J. Libres, Auburn University, Texas Instruments, “Reliability of flip chip packages with high thermal conductivity heat spreader attach,” 978-1-4244-2231-9/08/$25.00 ©2008 IEEE.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top