跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:樓宜林
研究生(外文):Lou, Yi-Lin
論文名稱:磷化銦系列近紅外寬波段發光二極體之研製
論文名稱(外文):The Fabrication of InP-Based Near-Infrared Broadband LED
指導教授:吳孟奇何充隆
指導教授(外文):Wu, Meng-ChyiHo, Chong-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:86
中文關鍵詞:磷化銦近紅外寬波段發光二極體
外文關鍵詞:InPNIRBroadbandLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在設計及製作以磷化銦為基板的近紅外寬波段發光二極體(LED)。磊晶片設計方面,我們利用InP/GaxIn1-xAsyP1-y異質接面使得LED得以一次輸出11.7 μm的光譜,且內含砷化鋁銦(InAlAs)電子阻擋層以提升載子復合效率,其中GaxIn1-xAsyP1-y以及InAlAs與InP基板皆為晶格匹配。製程中,我們利用快速熱擴散技術形成p-型區,該技術使用旋塗摻雜源,其可以避免使用檯面型結構所造成的漏電流過高問題,同時我們也使用電子槍蒸鍍透明導電膜,以達到電流分散的效果,進而提升LED的出光面積。本論文中,我們將深入探討擴快速熱擴散製程條件對於近紅外寬波段LED的電特性以及其光譜的影響。
最後,我們成功的製作出一個低漏電流(0.46595 nA)及低串聯電組(6.58 Ω)之近紅外寬波段發光二極體,其最佳的半高寬為 563 nm,此時,總發光功率在100 mA的注入電流下為5.8 mW;此外,最好的總發光功率為100 mA的注入電流下可達6.18 mW,此時其半高寬為420 nm,外部量子效率及插座效率分別為7.14%以及3.09%。

In this research, we demonstrated a novel planar-type InP-based near-infrared (NIR) broadband light-emitting diodes (LED) by using the rapid thermal diffusion (RTD) technique. The active layer consists of multiple double hetrostructures (DH) of InP/GaxIn1-xAsyP1-y layers and target to emit a broadband spectrum of 1-1.7 μm at once. In addition, we employed In0.52¬Al0.48As as electron blocking layer to improve the extraction efficiency. Moreover, when y=2.2x, GaxIn1-xAsyP1-y and In0.52¬Al0.48As are both lattice-matched to InP substrate. The p-type region were formed by RTD process with the zinc-phosphorous-dopant-coating (ZPDC) as the spin-on dopant (SOD) source to avoid high leakage from mesa-type structure. A gallium-doped zinc oxide (GZO) thin-film was adopted as transparent conductive layer to increase the light emitting region of LEDs.
Ultimately, we have successfully fabricated a small series resistance Rs of 6.5-8 Ω, and ultra-small leakage current of 0.465-95 nA under 5 V reverse bias. Moreover, the full-width of half-maximum (FWHM) is up to 563 nm and has an extraordinary total light output power of 5.8 mW.

Contents
中文摘要 .................................................................................................................. I
Abstract ................................................................................................................. II
Acknowledgements ...................................................................................................... III
Contents ................................................................................................................ IV
List of Figures ............................................................................................................ VII
List of Tables ............................................................................................................. XII
Chapter 1 Introduction .............................................................................................. 1
Chapter 2 Fundamental Principles and Theoretical Analysis ................................... 6
2-1 Introduction of InP/GaxIn1-xAsyP1-y Double Hetrostructure LED ................. 6
2-1-1 Physics Fundamentals of Double Hetrostructure .............................. 6
2-1-2 Principles and Merits of Rapid Thermal Diffusion ........................... 7
2-2 Theory and Development of Current Spreading Layer ................................. 9
2-3 Characterization Instruments ....................................................................... 13
2-3-1 I-V Characteristic Measurement System ......................................... 13
2-3-2 Electroluminescence (EL) Spectrum Measurement System ........... 13
2-3-3 Integrating Sphere Measurement System ........................................ 14
2-4 Transmission Line Model ............................................................................ 14
Chapter 3 Experimental Process ............................................................................. 22
3-1 Epitaxial Structure Design ........................................................................... 22
3-2 Photo-Mask Design ..................................................................................... 23
3-3 Thermal Driven-in Step ............................................................................... 27
3-4 Passivation Layer and Backside Reflector .................................................. 28
3-5 Fabrication Process of TLM Technology .................................................... 29
3-6 Fabrication Process of NIR Broadband LED .............................................. 30
3-6-1 Photo-Mask without Current Spreading Fingers ............................. 30
3-6-2 NIR LED Mask with Current Spreading Fingers ............................ 35
Chapter 4 Results and Discussion ........................................................................... 45
4-1 Basic Properties Measurements of Customized InP-Based NIR Broadband Epitaxy Wafer .............................................................................................. 45
4-1-1 Epi-wafer Cross-Section SEM photo and EDS ............................... 45
4-1-2 Photoluminescence (PL) .................................................................. 46
4-2 Analysis of Dopant Driven-in InP ............................................................... 46
4-2-1 Mg or Zn Driven-in InP ................................................................... 47
4-2-2 Influence of Diffusion Temperature and Time ................................ 47
4-3 Properties of Transparent Conductive Oxide and Backside Reflector ........ 50
4-3-1 Transparent Conductive Oxide – ITO ............................................. 50
4-3-2 Transparent Conductive Oxide – GZO ............................................ 52
4-4 Characteristics of InP-Based NIR Broadband LED without current spreading fingers pattern .............................................................................................. 53
4-4-1 Electrical Properties (I-V) ............................................................... 53
4-4-2 Electroluminescence properties (EL) .............................................. 55
4-4-3 Luminescence properties (L-I) ........................................................ 56
4-5 Characteristics of InP-Based NIR Broadband LED with current spreading fingers pattern .............................................................................................. 56
4-5-1 Electrical Properties (I-V) ............................................................... 57
4-5-2 Electroluminescence properties (EL) .............................................. 58
4-5-3 Luminescence properties (L-I) ........................................................ 59
Chapter 5 Conclusion .............................................................................................. 83
Reference ................................................................................................................ 84
[1] B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and Jeroen Lammertyna, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biology and Technology 46(2), 99–118 (2007)
[2] S. B. Colak, M. B. van der Mark, G. W.’t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 11431999 (1999)
[3] B. G. Osborne, T. Fearn, and P. H. Hindle, “Practical NIR Spectroscopy with Applications in Food and Beverage Analysis 2nd Edition,” John Wiley & Sons, Inc., New York, 1993
[4] G. C. Marten, J. S. Shenk, D. R. Buxton, J. L. Halgerson, and J. S. Hornstein, “Near Infrared reflectance spectroscopy (NIRS): analysis of forage quality in Four Legume Species”, United States Department of Agriculture - Agricultural Research Service, Agriculture Handbook, No. 643, Issued August 1985
[5] C. Roberts, J. Workman, and J. Reeves (eds.), “Near-infrared spectroscopy in agriculture”, ASA-CSSA-SSSA, Madison, WI, 2004
[6] J. Workman, “Handbook of Organic Compounds: NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants,” Volume 1, Academic Press, 2001
[7] E. Ciurczak and J. Drennen, “Near-Infrared Spectroscopy in Pharmaceutical and Medical Applications, Marcel-Dekker,” Inc. New York, 2002.
[8] M. R. Krames, H. Amano, J. J. Brown, and P.L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE Journal on Selected Topics in Quantum Electronics 8(2), 185188 (2002)
[9] L. D. Zhu, K. T. Chan, J. M. Ballantyne, “MOCVD growth and characterization of high quality InP,” Journal of Crystal Growth 73(1), 83–95 (1985)
[10] Haruhisa Soda, K.-I. Iga, C. Kitahara and Y. Suematsu, “GaInAsP/InP Surface Emitting Injection Lasers,” The Japanese Journal of Applied Physics 18(12), 23292330 (1979)
[11] C. E. Hurwitz and J. J. Hsieh, “GaInAsP/InP avalanche photodiodes,” Applied Physics Letters 32(8), 487489 (1978)
[12] T. L. Koch, U. Koren, R. P. Gnall, C. A. Burrus, and B. I. Miller, “Continuously tunable 1.5μm multiple-quantum-well GaInAs/GaInAsP distributed-Bragg-reflector lasers,” Electronics Letters 24(23), 1431–1433 (1988)
[13] S. J. Chang, C. S. Chang, Y. K. Su, and C. T. Lee, “Nitride-based flip-chip ITO LEDs,” IEEE Transactions On Advanced Packaging 28(2), 273277 (2005)
[14] X. Li , H. Y. Liu, S. Liu, X. Ni, M. Wu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “InGaN based light emitting diodes with Ga doped ZnO as transparent conducting oxide,” Physica Status Solidi A 207(8), 1993–1996 (2010)
[15] E. Fred Schubert, “Light-Emitting Diodes,” Cambridge University Press, 2006
[16] H. Zhao, G. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” Journal of Display Technology 9(4), 212225 (2013)
[17] E. F. Schubert, S. W. Downey, C. Pinzone, and A. B. Emerson, “Evidence of very strong inter-epitaxiallayer diffusion in Zn doped GaInPAs/InP structures,” Applied Physics A 60(6), 525527 (1995)
[18] V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” Journal of Applied Physics 100(3), 033713-16 (2006)
[19] M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films, 70(1), 91100 (1980)
[20] J. J. Berry, D. S. Ginley, and P. E. Burrows “Organic light emitting diodes using a Ga:ZnO anode” Applied Physics Letters 92(19), 193304-13 (2008)
[21] C.-L. Liao, Y.-F. Chang, C.-L. Ho, and M.-C. Wu, “High-Speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Letters 34(5), 611613 (2013)
[22] M. Fujita, T. Ueno, T. Asano, S. Noda, H. Ohhata, T. Tsuji, H. Nakada, and N. Shimoji “Organic light-emitting diode with ITO/organic photonic crystal” Electronics Letters 39(24), 1750 – 1752 (2003)
[23] 范志新、陈玖琳、孙以才, “透明导电薄膜的最佳掺杂含量理论计算”,半导体学报, 22(11), 13821386 (2001)
[24] A. Klein, C. K¨orber, A. Wachau, F. S¨auberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, “Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment,” Materials 3(11), 48924914 (2010)
[25] Z. Z. Youa and G. J. Huab, “Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering,” Journal of Alloys and Compounds 530(25), 11–17 (2012)
[26] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, “Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition” Journal of Applied Physics 80(2), 787791 (1996)
[27] 葉智禮, “氧化鋅鎵之透明導電薄膜材料特性與其應用在氮化鎵發光二極體上之研究,” 國立中央大學-光電科學研究所,碩士論文(民97)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊