|
A. Electric Vehicles [1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011. [2] A. G. Boulanger, A. C. Chu, S. Maxx and D. L. Waltz, “Vehicle electrification: status and issues,” in Proc. IEEE, vol. 99, no. 6, pp. 1116-1138, 2011. [3] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-finction bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE, pp. 3930-3936, 2009. [4] Y. Du, S. Lukic, B. Jacobson and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011, pp. 553-560. [5] O. C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018–2032, Jun. 2012. [6] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013. [7] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006. [8] G. Pellegrino, A. Vagati, B. Boazzo and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, 2012. [9] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002. B. Permanent-Magnet Synchronous Motor Drives Equivalent circuit modeling and parameter estimation [10] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002. [11] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [12] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003. [13] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007. [14] K. Liu, Z. Q. Zhu and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5902-5913, 2013. [15] K. Liu and Z. Q. Zhu, “Quantum genetic algorithm-based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2363-2371, 2015. Current control [16] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000. [17] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of- freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [18] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [19] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, pp. 2876-2881. [20] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008. [21] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. Direct torque control [22] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010. [23] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6. [24] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1912-1921, 2013. Speed control [25] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006. [26] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141. [27] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10. [28] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009. [29] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013. Voltage boosting and pulse amplitude modulation [30] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014. [31] H. C. Chang and C. M. Liaw, ‘‘On the front-end converter and its control for a battery powered switched-reluctance motor drive,’’ IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. [32] T. A. Burress, S. L. Campbell, C. L. Coomer, C.W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber and H. T. Lin, “Evaluation of the 2010 Toyota Prius hybrid synergy drive sysem,” Technical Report ORNL/TM-2010/ 253, 2010. [33] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014. Field-weakening control [34] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp. 508-512. [35] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445. [36] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009. [37] T. Miyajima, H. Fujimoto and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397. [38] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012. [39] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012. [40] A. Ebrahimi, M. Maier and N. Parspour, “Analysis of torque behavior of permanent magnet synchronous motor in field-weakening operation,” in Proc. IEEE PECI, 2013, pp. 120-124. [41] M. Preindl and S. Bolognani, ‘‘Optimal state reference computation with constrained MTPA criterion for PM motor drives,’’ IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4524-4535, 2015. [42] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM, and SynRM in use as air conditioning compressor,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, pp. 840-845, Oct. 1999. C. Supercapacitor in EVs [43] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806–820, 2007. [44] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012. [45] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power- smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511- 4522, 2012. [46] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735. 2012. [47] A. Ostadi, M. Kazerani and S. K. Chen, “Hybrid energy storage (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” IEEE Trans. ITEC., pp. 1-7, 2013. [48] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940–5948, 2013. D. Photovoltaic in EVs [49] S. A. Zabalawi, G. Mandic and A. Nasiri, "Utilizing energy storage with PV for residential and commercial use," in Proc. IEEE Conf. Ind. Electron., pp. 1045-1050, 2008. [50] X. Li, L. Lopes and S. Williamson, “On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy,” in Proc. IEEE PES., pp. 1-8, 2009. [51] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516–2520, 2010. [52] J. Traube, F. Lu and D. Maksimovic, “Electric vehicle DC charger integrated within a photovoltaic power system,” in Proc. IEEE Appl. Power Electron., pp. 352-358, 2012. [53] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, 2013. [54] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013. E. Position Sensorless Control Methods Based on the derived variables or identified parameters [55] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215. [56] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996. [57] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303. [58] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006. [59] M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012. [60]B. H. Bae, S. K. Sul, J. H. Kwon and J. S. Byeon, “Implementation of sensorless vector control for super- high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 811-818, 2003. Back-EMF methods [61] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in IEE Proc. Electric Power Appl., 2001, vol. 147, no. 6, pp. 503-512. [62] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010. [63] Z. Wang, K. Lu and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012. [64] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, 2010. [65] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000. [66] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002. Observer based methods [67] J. Kim and S. K. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol. 1, pp. 75-82. [68] J. Solsona, M. I. Valla and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996. [69] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000. [70] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008. [71] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496. Methods based on rotor magnet saliency [72] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995. [73] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998. [74] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002. [75] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668. [76] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004. [77] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005. [78] Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005. [79] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009. [80] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989. [81] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010. [82] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511. [83] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor,” in Proc. IEEE PESC, 2008, pp. 4256-4262. [84] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241. [85] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010. [86] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767. [87] S. Bolognani, S. Calligaro, R. Petrella and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011. F. PWM Inverters [88] M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [89] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002. [90] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003. [91] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007. [92] R. González, E. Gubia, J. López and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008. [93] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter- topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760. [94] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011. [95] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994. G. Vehicle-to-Home/Vehicle-to-Grid Discharging Operation [96] C. M. Liaw and S. J. Chiang, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 540-549, 1994. [97] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283. [98] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for Plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721. [99] R. J. Ferreira, L. M. Miranda, R. E. Araujo and J. P. Lopes, “A new bi-directional charger for vehicle-to-grid integration,” in Proc. IEEE ISGT, 2011, pp. 1-5. [100] M. Takagi, Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari and T. Ikeya, “Electricity pricing for PHEV bottom charge in daily load curve based on variation method,” in Proc. IEEE ISGT, 2012, pp. 1-6. [101] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013. [102] T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013. [103] C. Liu, K. T. Chau, D. Wu and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013. [104] M. Kesler, M. C. Kisacikoglu, and L. M. Tolbert, “Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6778-6784, 2014. [105] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013. [106] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015. H. Front-end Converters and Switch-mode Rectifiers [107] F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293. [108] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19. [109] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [110] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [111] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [112] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [113] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [114] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [115] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013. I. Others [116] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2015,07,29. [117] T. H. Yeh, “An electric vehicle IPMSM motor drive with supercapacitor energy storage and photovoltaic auxiliary energy harvesting,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2014. [118] T. J. Barlow, S. Latham, I. S. McCrae and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
|