跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭韋甫
研究生(外文):Cheng, Wei Fu
論文名稱:具G2V/V2H/V2G及能源收集功能電動車無位置感測永磁同步馬達驅動系統之開發
論文名稱(外文):DEVELOPMENT OF AN ELECTRIC VEHICLE POSITION SENSORLESS PMSM DRIVE WITH G2V/V2H/V2G AND ENERGY HARVESTING CAPABILITIES
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Liaw, Chang Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:162
中文關鍵詞:永磁同步馬達電動車蓄電池超電容變頻器介面轉換器交錯式轉換器無位置感測控制再生煞車功因校正電網至車輛車輛至家庭車輛至電網能源收集太陽光伏
外文關鍵詞:PMSMelectric vehiclebatterysupercapacitorinverterinterface converterinterleavingsensorless controlregenerative brakingpower factor correctionG2VV2HV2Genergy harvestingPV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在開發一具有良好驅控與再生煞車性能之電池/超電容供電電動車用無位置感測內置磁石永磁同步馬達驅動系統。於閒置狀態下,利用馬達驅動系統既存電路元件適當組接,可具電網至車輛及車輛至家庭/車輛至電網等功能。此外,所配備之能源收集系統,可使交流電源與太陽光伏輸入提供能源支持。蓄電池與超電容分別經由交錯式及標準雙向直流-直流轉換器介接至馬達驅動系統之直流鏈。超電容可輔助馬達之加速,及儲存再生煞車回送之能量進而轉存至電池。所提之高頻注入無位置感測控制機構,利用變化頻率之注入信號,避免內置磁石永磁同步馬達反電動勢之諧波效應。藉由合宜之控制,所建驅動系統具良好之驅控特性,含加/減速、反轉及再生煞車等。另外亦從事所建無位置感測馬達驅動系統與標準驅動系統之性能實測比較評定。
在電網至車輛操作上,以切換式整流器建構之車載充電器,可得良好之充電特性及交流入電電力品質。至於車輛至家庭/車輛至電網之操作,所建構之單相三線式變頻器可產出具良好波形品質的220V/110V 60Hz交流電壓,供給家用電器以減少自市電汲取之能源;更甚者,可回送預設之功率至市電。
對於所建構之能源收集系統,車輛於路跑情況下,所收集之太陽光伏能源可直接對電池充電。於閒置時,太陽光伏與單相交流電源均可利用馬達驅動系統既存電路元件對電池充電。

This thesis develops an electric vehicle position sensorless interior permanent-magnet synchronous motor (IPMSM) drive powered by battery/supercapacitor (SC) having good driving and regenerative braking performances. In idle condition, it possesses grid-to-vehicle (G2V), vehicle-to-home (V2H) and vehicle-to-grid (V2G) capabilities using the embedded motor drive components. Moreover, an energy harvesting system is equipped to allow the energy support from the AC source and photovoltaic (PV). The battery and SC are respectively interfaced to the motor drive DC-link via an interleaved and a standard bidirectional DC/DC converters. The SC can assist the motor in acceleration and store the recovered regenerative braking energy and transfer to the battery. The high-frequency injection (HFI) based sensorless control technique with varied injection frequencies is proposed to avoid the back-EMF harmonic effects possessed by an IPMSM. Through proper control, good driving operation characteristics are preserved, including acceleration/deceleration, reversible and regenerative braking operations. In addition, the experimental comparative driving performance evaluation to the standard EV IPMSM drive is also conducted.
In G2V operation, an on-board switch mode rectifier (SMR) based charger is formed to yield good battery charging performance with satisfactory line drawn power quality. As to the V2H/V2G operations, the 220V/110V 60Hz AC output voltages with good waveform quality are generated from the developed single-phase three-wire (1P3W) inverter to power home appliances for reducing the energy drawn from the mains, and even send the preset power back to the mains.
For the developed energy harvesting system, the harvested PV energy can directly charge the battery under road driving condition. In idle case, both PV and single-phase AC source can be arranged to charge the battery using the schematic formed by the motor drive embedded circuit components.

誌謝...............................................a
摘要...............................................b
目錄...............................................c
第一章、簡介........................................d
第二章、永磁同步馬達及電動車之概要.....................f
第三章、電動車無位置感測內置磁石永磁同步馬達驅動之開發...g
第四章、電網至車輛、車輛至家庭與車輛至電網操作..........h
第五章、所開發之能源收集系統..........................i
第六章、結論........................................j
附錄: 英文論文......................................l

CHAPTER 1 INTRODUCTION..........................1
CHAPTER 2 FUNDAMENTALS OF PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES AND ELECTRIC VEHICLES....................7
2.1 Introduction......................................7
2.2 Permanent Magnet Synchronous Motor Drives.........7
A. Some Key Issues of a PMSM Drive..................7
B. Motor Structures.................................7
C. Brushless DC Motor Operation Control.............10
D. Physical Modeling................................10
E. Parameter Estimation of the Employed PMSM........13
F. Effects Parameter Variations.....................14
2.3 EV Emulated Load..................................16
2.4 Energy Storage Devices in EVs.....................17
A. Flywheel.........................................17
B. Supercapacitor...................................18
2.5 Electric Vehicle and Its Applications as Moving Energy Storage........................................20
A. Classifications of EVs...........................20
B. Typical Power Control Units......................22
C. G2V/V2H/V2G Operations...........................22
2.6 Interface Power Converters........................23
A. DC/DC Converters.................................23
B. AC/DC Switched-Mode Rectifiers...................23
C. PWM Inverters....................................25
D. Possible Single-phase Three-wire Inverters.......28
E. Some Existing Integrated Converters Capable of V2G Operation.............................................29
2.7 Introductory Power Quality........................31
2.8 System Configuration and Operation of the Developed EV IPMSM Drive........................................33
A. System Configuration.............................33
B. Operation Modes..................................33
CHAPTER 3 DEVELOPMENT OF EV POSITION SENSORLESS IPMSM DRIVES................................................35
3.1 Introduction......................................35
3.2 System Configuration of the Established IPMSM Drives ......................................................35
A. Standard IPMSM Drive.............................35
B. HFI Position Sensorless IPMSM Drive..............39
3.3 Establishment of IPMSM Drive......................40
A. Phase Voltage Equation...........................40
B. Power Circuit....................................44
C. Current and Speed Control Schemes................44
D. Position Sensorless Control Scheme...............45
3.4 Battery Interface DC/DC Converter.................48
A. Power Circuit....................................48
B. Control Scheme...................................50
3.5 Experimental Evaluation of Standard EV IPMSM Drive.57
A. Starting Characteristics.........................57
B. Effects of Field-Weakening, Commutation Shift and Voltage Boosting......................................57
C. Speed Responses..................................63
D. Acceleration/Deceleration and Regenerative Braking Characteristics.......................................64
E. Adjustable DC-link Voltage.......................67
F. Fault-tolerant Capability Test...................71
3.6 Battery/SC Powered Standard EV IPMSM Drive........72
A. System Configuration.............................72
B. Performance Evaluation...........................75
3.7 Dynamic Braking Characteristics...................81
3.8 Experimental Evaluation of Position Sensorless EV IPMSM Drive...........................................83
A. Starting Characteristics.........................83
B. Steady-state Characteristics.....................84
C. Speed Dynamic Response...........................87
D. Acceleration/deceleration Characteristics........90
E. Regenerative Braking Characteristics.............92
F. Effects of Injecting Fixed Frequency and Switched Frequency.............................................94
CHAPTER 4 GRID-TO-VEHICLE, VEHICLE-TO-HOME AND VEHICLE-TO-GRID OPERATIONS....................................96
4.1 Introduction......................................96
4.2 G2V Charging Operation............................96
A. Single-phase Boost SMR...........................98
B. Assessment of the Single-phase H-bridge Boost SMR Based Battery Charger................................100
C. Three-phase Boost SMR...........................102
D. Assessment of the Three-phase Boost SMR Based Battery Charger......................................104
4.3 Functional Description of V2H/V2G Modes..........105
4.4 Autonomous V2H Discharging Operation.............107
A. Power Circuit...................................108
B. Modeling of 1P3W Inverter.......................109
C. Inverter Control Schemes........................111
D. Experimental Results............................113
4.5 Grid Connected V2G Discharging Operation.........117
A. System Configuration and Functional Description.117
B. Control Scheme..................................118
C. Experimental Results............................121
CHAPTER 5 THE DEVELOPED ENERGY HARVESTING SYSTEM.....129
5.1 Introduction.....................................129
5.2 System Configuration.............................129
5.3 Plug-in AC or DC Source via Single-phase Bridgeless SMR..................................................130
A. Interleaved Buck DC/DC Converter................130
B. Single-phase Bridgeless Boost SMR...............133
C. Plug-in Mechanism Based Battery Charger with AC Source Input.........................................140
D. Plug-in Mechanism Based Battery Charger with DC Source Input.........................................143
5.4 Harvested PV Source via DC/DC Boost Converter....146
A. Power Circuit Components........................146
B. Control Scheme..................................148
C. Performance Evaluation..........................149
CHAPTER 6 CONCLUSIONS................................150
REFERENCES...........................................152



A. Electric Vehicles
[1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[2] A. G. Boulanger, A. C. Chu, S. Maxx and D. L. Waltz, “Vehicle electrification: status and issues,” in Proc. IEEE, vol. 99, no. 6, pp. 1116-1138, 2011.
[3] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-finction bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE, pp. 3930-3936, 2009.
[4] Y. Du, S. Lukic, B. Jacobson and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011, pp. 553-560.
[5] O. C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018–2032, Jun. 2012.
[6] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[7] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[8] G. Pellegrino, A. Vagati, B. Boazzo and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, 2012.
[9] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002.
B. Permanent-Magnet Synchronous Motor Drives
Equivalent circuit modeling and parameter estimation
[10] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
[11] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[12] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[13] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
[14] K. Liu, Z. Q. Zhu and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5902-5913, 2013.
[15] K. Liu and Z. Q. Zhu, “Quantum genetic algorithm-based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2363-2371, 2015.
Current control
[16] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
[17] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of- freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[18] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[19] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, pp. 2876-2881.
[20] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008.
[21] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Direct torque control
[22] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010.
[23] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[24] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1912-1921, 2013.
Speed control
[25] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[26] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[27] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[28] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[29] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
Voltage boosting and pulse amplitude modulation
[30] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014.
[31] H. C. Chang and C. M. Liaw, ‘‘On the front-end converter and its control for a battery powered switched-reluctance motor drive,’’ IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[32] T. A. Burress, S. L. Campbell, C. L. Coomer, C.W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber and H. T. Lin, “Evaluation of the 2010 Toyota Prius hybrid synergy drive sysem,” Technical Report ORNL/TM-2010/ 253, 2010.
[33] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014.
Field-weakening control
[34] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp. 508-512.
[35] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
[36] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
[37] T. Miyajima, H. Fujimoto and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397.
[38] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
[39] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[40] A. Ebrahimi, M. Maier and N. Parspour, “Analysis of torque behavior of permanent magnet synchronous motor in field-weakening operation,” in Proc. IEEE PECI, 2013, pp. 120-124.
[41] M. Preindl and S. Bolognani, ‘‘Optimal state reference computation with constrained MTPA criterion for PM motor drives,’’ IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4524-4535, 2015.
[42] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM, and SynRM in use as air­ conditioning compressor,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, pp. 840-845, Oct. 1999.
C. Supercapacitor in EVs
[43] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806–820, 2007.
[44] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[45] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power- smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511- 4522, 2012.
[46] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735. 2012.
[47] A. Ostadi, M. Kazerani and S. K. Chen, “Hybrid energy storage (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” IEEE Trans. ITEC., pp. 1-7, 2013.
[48] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940–5948, 2013.
D. Photovoltaic in EVs
[49] S. A. Zabalawi, G. Mandic and A. Nasiri, "Utilizing energy storage with PV for residential and commercial use," in Proc. IEEE Conf. Ind. Electron., pp. 1045-1050, 2008.
[50] X. Li, L. Lopes and S. Williamson, “On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy,” in Proc. IEEE PES., pp. 1-8, 2009.
[51] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516–2520, 2010.
[52] J. Traube, F. Lu and D. Maksimovic, “Electric vehicle DC charger integrated within a photovoltaic power system,” in Proc. IEEE Appl. Power Electron., pp. 352-358, 2012.
[53] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, 2013.
[54] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013.
E. Position Sensorless Control Methods
Based on the derived variables or identified parameters
[55] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
[56] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[57] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303.
[58] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[59] M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
[60]B. H. Bae, S. K. Sul, J. H. Kwon and J. S. Byeon, “Implementation of sensorless vector control for super- high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 811-818, 2003.
Back-EMF methods
[61] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in IEE Proc. Electric Power Appl., 2001, vol. 147, no. 6, pp. 503-512.
[62] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[63] Z. Wang, K. Lu and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[64] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, 2010.
[65] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[66] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
Observer based methods
[67] J. Kim and S. K. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol. 1, pp. 75-82.
[68] J. Solsona, M. I. Valla and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[69] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[70] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[71] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
Methods based on rotor magnet saliency
[72] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
[73] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
[74] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[75] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[76] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[77] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[78] Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[79] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[80] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[81] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[82] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[83] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor,” in Proc. IEEE PESC, 2008, pp. 4256-4262.
[84] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[85] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[86] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[87] S. Bolognani, S. Calligaro, R. Petrella and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
F. PWM Inverters
[88] M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[89] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
[90] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[91] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
[92] R. González, E. Gubia, J. López and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
[93] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter- topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[94] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[95] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
G. Vehicle-to-Home/Vehicle-to-Grid Discharging Operation
[96] C. M. Liaw and S. J. Chiang, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 540-549, 1994.
[97] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[98] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for Plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721.
[99] R. J. Ferreira, L. M. Miranda, R. E. Araujo and J. P. Lopes, “A new bi-directional charger for vehicle-to-grid integration,” in Proc. IEEE ISGT, 2011, pp. 1-5.
[100] M. Takagi, Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari and T. Ikeya, “Electricity pricing for PHEV bottom charge in daily load curve based on variation method,” in Proc. IEEE ISGT, 2012, pp. 1-6.
[101] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
[102] T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
[103] C. Liu, K. T. Chau, D. Wu and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[104] M. Kesler, M. C. Kisacikoglu, and L. M. Tolbert, “Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6778-6784, 2014.
[105] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[106] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
H. Front-end Converters and Switch-mode Rectifiers
[107] F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[108] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19.
[109] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[110] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[111] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[112] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[113] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[114] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[115] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
I. Others
[116] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2015,07,29.
[117] T. H. Yeh, “An electric vehicle IPMSM motor drive with supercapacitor energy storage and photovoltaic auxiliary energy harvesting,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2014.
[118] T. J. Barlow, S. Latham, I. S. McCrae and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 具車輛至電網及電網至車輛操作功能蓄電池/超電容供電之切換式磁阻馬達驅動系統
2. 具混合儲能源及插入式能源補充之風力開關式磁阻發電機供電直流微電網
3. 具電網至車輛/車輛至電網及插入式能源收集功能之蓄電池/超電容供電電動車開關式磁阻馬達驅動系統
4. 升降壓轉換器介接蓄電池/超電容供電具聯網與能源收集功能之無位置感測電動車永磁同步馬達驅動系統
5. 具混合儲能源風力永磁同步發電機為主直流微電網之開發及操控
6. 無橋切換式整流器供電開關式磁阻馬達驅動系統之開發及增能控制
7. 具聯網及能源收集功能之蓄電池/超電容供電之電動車永磁同步馬達驅動系統
8. 具雙向隔離充電器之蓄電池/超電容供電之電動車開關式磁阻馬達驅動系統
9. 用於以風力開關式磁阻發電機為主直流微電網插入式能源支撐系統之開發
10. 具主動式濾波器輔助三相單開關升壓型切換式 整流器切換式磁阻馬達驅動系統之開發
11. 具能源支撐直流鏈之雙向切換式整流器供電切換式磁阻馬達驅動系統
12. 具雙向隔離聯網及能源收集功能之電動車永磁同步馬達驅動系統
13. 開關式磁阻馬達驅動飛輪之開發及其於 馬達驅動系統能源支撐之應用
14. 同步磁阻馬達驅動系統之開發及其無位置感測控制研究
15. 具超電容儲能及太陽光伏輔助能源收集之電動車內置磁石永磁同步馬達驅動系統