(34.237.124.210) 您好!臺灣時間:2021/03/02 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白達磊
研究生(外文):Dan Berco
論文名稱:奈米粒子局域表面電漿子的頻譜分析方法
論文名稱(外文):A Spectral Analysis Method of Localized Surface Plasmons on Nano Particles
指導教授:胡進錕胡進錕引用關係蕭百沂
指導教授(外文):Chin-Kun HuPai-Yi Hsiao
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:107
中文關鍵詞:DDALSPDDA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we develop a method to study of the localized surface plasmon (LSP) modes of nano particles (NP), having arbitrary shapes, by means of discrete dipole approximation (DDA), and implement a spherical harmonics transform (SHT) to analyze their spectral fingerprint. We developed an efficient solution within the DDA for the near and intermediate field terms of the interaction using the dyadic green function and determine the optical extinction efficiency with the far field term. By implementing this approach, one may combine the advantages of a spectral analysis along with a DDA flexibility to solve an arbitrary shaped model, and demonstrate the LSP dominant mode wavelength dependency. This method provides a metric to quantify the effects of minor changes in the model structure, or the external dielectric environment, in optical experiments. We further use the method to calculate the LSP on different NP of various shapes and materials as well as to study the effect a single BSA has on the LSP when attached to the surface of a gold nano shell. The theoretical basis provided in this work may be used not only to identify a single BSA conjugated nano particle, but also to determine the cavity content of the BSA by its refractive index properties, from optical measurements.
在此論文研究中,我們使用離散偶極近似法(discrete dipole approximation, 簡稱 DDA),發展出一種能研究任意形狀奈米粒子之局域表面電漿子(localized surface plasmon, 簡稱 LSP)模式的方法,此方法使用球諧變換(spherical harmonic transform, 簡稱 SHT)來分析奈米粒子的光譜特徵。在DDA近似法下使用二元格林函數,我們發展了一種處理近場及中間場交互作用的有效解決方案,並計算遠方場的光學衰减效率。人們可結合頻譜分析的優點與DDA的可用性來處理任意形狀的粒子,且可以用這個方法來研究LSP主導模式波長的依賴性。此方法提供一個標準量度法來量化光學實驗中模型結構或外部介質環境的微小變化。我們進一步使用這個方法來計算在各種不同形狀和材料奈米粒子上的LSP, 並研究金奈米球殼被單一蛋白質接觸時對LSP所產生的影響效果。這項研究所提供的理論依據不但可以用來識別單一蛋白質所結合的奈米粒子,也能使用它,藉由光學法測量折射率性質,來判定一個蛋白質的空腔內容。
Chapter Page
ABSTRACT iv
ACKNOWLEDGMENTS vii
TABLE OF CONTENTS viii
LIST OF TABLES x
LIST OF FIGURES xi
GLOSSARY xiv
CHAPTER I: Introduction 1
CHAPTER II: Theoretical Background 3
Plasmons 3
Bulk Plasmons 3
The Drude Model 3
The Lorentz-Drude Model 4
Dispersion Relation 9
Surface Plasmons 10
NP Plasmons 14
LSP Resonance 14
NP Bio-Sensing 16
SPP Damping Mechanisms 17
FWHM 18
CHAPTER III: Optical Interaction Models 19
Oscillating Dipole Radiation 19
Quasi static Approximation 20
Electric Dipole Moment 20
Clausius-Mossotti Relation 20
Mie Theory 21
Discrete Dipole Approximation 23
CHAPTER IV: METHODOLOGY 24
Overview 24
Modeling Considerations 24
Target Dielectric Properties 26
BSA Dielectric Properties 29
Host Matrix Dielectric Properties 31
Small Target Approximation 32
Optical Properties 38
Structure Function 40
CHAPTER V: RESULTS – Nano Particles 42
Comparison to the Mie Theory 42
AuNS with a Silica Core 44
Ag Nano Spheres 54
Ag Nano Sphere (r =20nm) 57
Ag Nano Cubes 59
Ag Nano Cube (d=16nm) 61
CHAPTER VI: RESULTS – BSA Conjugated AuNS 63
BSA NS Model 65
Structural Model 65
BSA Cavities 67
Simulation Conditions 68
Simulation Results 69
Extinction Peak Magnitude 71
Extinction Peak Wavelength 73
DSHT Analysis 74
CHAPTER VII: CONCLUSIONS 77
BIBLIOGRAPHY 79
Appendix A: Discrete Spherical Harmonic Transform (DSHT) 84
Appendix B: Discrete Dipole Approximation (DDA) 86
Appendix C: CAVE Log File for BSA 89
Appendix D: Publication List 92


BIBLIOGRAPHY

[1] Mie Gustav, "Ann. Phys.," vol. 25, no. 377, 1908.
[2] Bohren C. F. and Huffman D. R., Absorption and Scattering of Light by Small Particles, Wiley, 1998.
[3] B. T. Draine and P. J. Flatau, "Discrete dipole approximation for scattering calculations," J. Opt. Soc. Am. A, vol. 11, pp. 1491-1499, 1994.
[4] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., vol. 14, p. 302, 1966.
[5] A. J. Ward and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., vol. 43, no. 4, pp. 773-793, 1995.
[6] A. J. Ward and J. B. Pendry, "A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method," Comput. Phys. Commun., vol. 128, p. 590–621, 2000.
[7] Kelly K. L., Coronado E., Zhao L. L. and Schatz G .C., "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B, vol. 3, no. 107, p. 668–677, 2003.
[8] Schatz G., "Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates," C. J. Mol. Struct., no. 573, p. 73–80, 2001.
[9] Lee K. S. and El-Sayed M. A., "Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index," J. Phys. Chem. B, vol. 109, no. 43, p. 20331–20338, 2005.
[10] Shuford K. L., Ratner M. A. and Schatz G. C., "Multipolar excitation in triangular nanoprisms," J. Chem. Phys., vol. 123, no. 11, 2005.
[11] Aden A. L. and Kerker M., "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys., vol. 22, pp. 1242-1246, 1951.
[12] Link S., Mohamed M. B. and El-Sayed M. A., "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B, vol. 103, no. 40, p. 8410–8426, 1999.
[13] Coronado E. A. and Schatz G. C., "Surface plasmon broadening for arbitrary shape nanoparticles," J. Phys. Chem. B, vol. 119, p. 3926−3934, 2003.
[14] Gans R., "Über die Form ultramikroskopischer Silberteilchen," Ann. Phys. (Leipzig), vol. 47, p. 270, 1915.
[15] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, no. 21, p. 396–402, 1902.
[16] L. Rayleigh, "On the Dynamical Theory of Gratings," Proc. R. Soc. Lond. A, vol. 79, no. 532, pp. 399-416, 1907.
[17] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," J. Opt. Soc. Am., vol. 31, no. 213-222, 1941.
[18] P. Drude, "Zur Elektronentheorie der Metalle," Ann. Phys, vol. 306, no. 3, p. 566–613, 1900.
[19] P. Drude, "Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte," Ann. Phys., vol. 306, no. 3, p. 369–402, 1900.
[20] H. A. Lorentz, “The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat”, Teubner, Leipzig, 1909.
[21] H.A. Lorentz, “The absorption and emission lines of gaseous bodies”, KNAW, Proceedings, 8 II, 1905-1906, Amsterdam, 1906, pp. 591-611.
[22] N. W. Ashcroft and N. D. Mermin, “Solid State Physics”, Holt Rinehart and Winston, 1976, ISBN 0-03-083993-9.

[23] C. Kittel and P. McEuen, Introduction to solid state physics, Wiley, 1976.
[24] F. Ladstädter, U. Hohenester, P. Puschnig and C. Ambrosch-Draxl, "First-principles calculation of hot-electron scatterings in metals," Phys. Rev. B, vol. 70, 2004.
[25] Christy and Johnson, "Optical constants of the noble metals," Phys. Rev. B, vol. 6, no. 12, pp. 4370-4379, 1972.
[26] Jan Becker, Andreas Trügler, Arpad Jakab, Ulrich Hohenester and Carsten Sönnichsen, "The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing," Plasmonics, vol. 5, no. 61, 2010.
[27] S. K. Mitra, N. Dass and N. C. Varshneya, "Temperature Dependence of the Refractive Index of Water," J. Chem. Phys, vol. 57, p. 1978, 1972.
[28] C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen and J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B, vol. 50, p. 15337–15348, 1994.
[29] M. Wolf, "Femtosecond dynamics of electronic excitations at metal surfaces," Surf. Scie., vol. 377, p. 343–349, 1997.
[30] N. W. Ashcroft and N. D. Mermin, Festkörperphysik. Oldenbourg, München: ISBN 978-3-48658273-4, 2007.
[31] H. C. van de Hulst, Light Scattering by Small Particles, New York, ISBN 978-0486642284: Dover Publications, 1981.
[32] E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., vol. 186, p. 705–714, 1973.
[33] Drain B. T. a. Flatau P. J, User Guide for the Discrete Dipole Approximation Code DDSCAT, 2004.
[34] B. T. Draine and J. J. Goodman, "Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation," Astrophys. J., no. 405, pp. 685-697, 1993.
[35] Felidj N., Aubard J. and Levi G., "Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids," J. Chem. Phys., vol. 111, no. 3, 1999.
[36] B. T. Draine, J. J. Goodman and P. J. Flatau, "Application of fast-Fourier-transform techniques to the discrete-dipole approximation," OPTICS LETTERS, vol. 16, no. 15, 1991.
[37] Kelly K. L., Coronado E., Zhao L. L. and Schatz, G. C., "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B, vol. 107, no. 3, p. 668–677, 2003.
[38] Cecilia Noguez, "Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment," J Phy Chem C, vol. 111, no. 10, pp. 3806-3819, 2007.
[39] Evgenij Zubko, D. Petrov, Y. Grynko and Y. Shkuratov, "Validity criteria of the discrete dipole approximation," Applied Optics, vol. 49, no. 8, pp. 1267-1279, 2010.
[40] A. D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., vol. 37, no. 22, pp. 5271-5283, 1998.
[41] Liu Changhong, "The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications," IEEE TRANS ON NANO, vol. 10, no. 4, 2011.
[42] Granqvist C. and G. Hunderi, "Optical properties of ultrafine gold particles," Phys. Rev. B, vol. 16, 1977.
[43] Palik E. D., Handbook of Optical Constants of Solids Vol I, Academic Press.
[44] Anh D. Phan, T. X. Hoang and T. H. L. Nghiem, "Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates," Appl. Phys. Lett., vol. 103, no. 16, 2013.
[45] C. M. Roth, B. L. Neal and A. M. Lenhoff, "Van der Waals interactions involving proteins," Biophys. J., vol. 70, pp. 977-987, 1996.
[46] T. Inagaki, R. N. Hamm, E. T. Arakawa, and R. D. Birkhoff, “Optical Property of Bovine Plasma Albumin Between 2 and 82 eV”, BIOPOLYMERS, vol. 14, pp. 839-847, 1975.

[47] R. Mehra, "Application of refractive index mixing rules in binary systems of hexadecane and heptadecane withn-alkanols at different temperatures," Proc. Indian Acad. Sci. (Chem. Sci.), vol. 115, no. 2, p. 147–154, 2003.
[48] Reiss E., "Eine neue methode der quantitativen eiweissbestimmung," Arch exp Path Pharmak., vol. 51, pp. 18-29, 1903.
[49] Robertson T. B., "On the refractive indices of certain proteins," J. Biol. Chem., no. 11, pp. 179-200, 1912.
[50] Adair G. S. and M. E. Robinson, "The specific refraction increments of serum-albumin and serum-globulin," Biochem. J., vol. 24, 1930.
[51] J. A. De Feijter et al., "Ellipsometry as a tool to study the behaviour of synthetic and biopolymers at the air water interface," Biopolymers, vol. 17, no. 7, pp. 1759-1772, 1978.
[52] Evlyukhin A. B., "Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation," Physical Review B, no. 84, 2011.
[53] J. F. Martin, C. Girard and A. Dereux, "Generalized field propagator for electromagnetic scattering and light confinement," Phys. Rev. Lett., vol. 74, no. 526, 1995.
[54] Flatau P. J., "Fast solvers for one dimensional light scattering in the discrete dipole approximation," Opt. Express, vol. 14, no. 12, pp. 3149-3155, 2004.
[55] Flatau, P. J., "''Improvements in the discrete-dipole approximation method of computing scattering and absorption," Opt. Lett., vol. 16, no. 22, pp. 1205-1207, 1997.
[56] Draine B. T., "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J., no. 333, pp. 848-872, 1988.
[57] C. Liu, C. C. Mi and B. Q. Li, "The plasmon resonance of a multilayered gold nanoshell and its potential bioapplications," IEEE Transactions on Nanotechnology, vol. 10, no. 4, pp. 797-805, 2011.
[58] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, "Scattering Spectra of Single Gold Nanoshells," Nano Lett., vol. 4, no. 12, pp. 2355-2359, 2004.
[59] Leif J. Sherry, Shih-Hui Chang, George C. Schatz and Richard P. Van Duyne, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett., vol. 5, no. 10, 2005.
[60] An-Qi Zhang, Dong-Jin Qian and Meng Chen, "Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures," Eur. Phys. J. D, vol. 67, no. 231, 2013.
[61] Chen Y. M., Yu C. J., Cheng T. L. and Tseng W. L., "Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles," Langmuir, p. 3654–3660, 2008.
[62] Wangoo N., Bhasin K. K., Meht S. K. and Suri C. R., "Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies," J. Colloid Interface Sci., vol. 323, p. 247–254, 2008.
[63] Byrne J. D., Betancourt T. and Brannon-Peppas L., "Active targeting schemes for nanoparticle systems in cancer therapeutics," Adv. Drug Deliv. Rev., vol. 60, p. 1615–1626.
[64] Sha Lou, Jia-ying Ye, Ke-qiang Li and Aiguo Wu, "A gold nanoparticle-based immunochromatographic assay: The influence of nanoparticulate size," Analyst, vol. 137, no. 5, pp. 1174-1181, 2012.
[65] Chen P. C., Mwakwari S. C. and Oyelere A. K., "Gold nanoparticles: from nanomedicine to nanosensing," Nanotechnol., Sci. Appl., vol. 1, no. 45, p. 45–65, 2008.
[66] Lo Kin-Man, "Monitoring of DNA–protein interaction with single gold nanoparticles by localized scattering plasmon resonance spectroscopy," Methods, vol. 64, no. 3, pp. 331-337, 2013.
[67] Thi Ha Lien Nghiem et al., "Capping and in vivo toxicity studies of gold nanoparticles," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 3, no. 1, 2012.
[68] Jan Buša, Shura Hayryan and Chin-Kun Hu, "CAVE: a package for detection and quantitative analysis of internal cavities in a system of overlapping balls: application to proteins," Computer Physics Communications, no. 181, pp. 2116-2125, 2010.
[69] Shuming Nie and Steven R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, vol. 275, no. 5303, pp. 1102-1106, 1997.
[70] P. K. Jain, K. S. Lee and I. H. El-Sayed, "Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine," J. Phys. Chem. B, vol. 110, pp. 7238-7248, 2006.
[71] L. B. Pellegri, N. de Sanctis, O. Tocho and J. O. Scaffardi, "Sizing gold nanoparticles by optical extinction spectroscopy," Nanotechnology, vol. 16, no. 158, 2005.
[72] A. D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., vol. 37, 1998.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔