(3.215.180.226) 您好!臺灣時間:2021/03/06 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏皓
論文名稱:低溫沉積之介電層與三維堆疊垂直閘極結構運用於電荷儲存式快閃記憶體之特性研究
論文名稱(外文):Effect of Low-Temperature Formed Dielectrics and Vertical Gate 3D Stacked Junctionless Charge Trapping Flash Memory Devices
指導教授:張廖貴術
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:低溫沉積介電層垂直閘極三維堆疊記憶體無接面電荷捕捉記憶體能帶工程
外文關鍵詞:Low-Temperature Formed DielectricsVertical Gate 3D Stacked Flash Memory DevicesJunctionless Charge Trapping Flash Memory DevicesBandgap Engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近在元件日漸微縮的趨勢下,平面式元件微縮空間有限,造成元件密度難增加且製程難度跟著大幅的提升,因此如何提升電性又能提高元件密度為目前最重要的課題之一。有些解決方法已漸漸被提出,如高介電常數材料的應用、奈米線通道的結構、無接面快閃記憶體元件的應用和三維堆疊陣列等等。本篇論文以三維可堆疊式電荷捕捉式快閃記憶體元件為主軸,輔以高介電常數材料作能帶工程的應用,目的是用三維結構增加單位面積之元件密度,並且用二氧化鉿/氮化矽堆疊的電荷捕捉層優化其特性。
第一個實驗首次做出我們自己設計的三維垂直式堆疊閘極和無接面通道結合應用在快閃記憶體元件上。本實驗中,以傳統的氧氮氧(ONO)結構為記憶體的氧化層,製作在無接面奈米線通道式的快閃記憶體元件上,因為是堆疊閘極元件,所以做出的快閃記憶體元件有上下兩層,我們將兩層的特性做比較。因為是無接面元件,在寫入速度和可靠度特性的表現上都具有不錯的表現,唯抹除速度較為緩慢,而在上下層元件的一致性和互相干擾特性都算良好。
第二個實驗中以二氧化鉿/氮化矽堆疊的結構作為電荷捕捉層,製作在第一個實驗一樣的結構上但沒有做堆疊閘極,期望使用能帶工程的電荷捕捉層達道改進抹除速度的效果。用上了二氧化鉿/氮化矽堆疊電荷捕捉層,不管是在寫入速度和元件可靠度上都比第一章更加的提升,且在最在意的抹除速度方面也能達到預期有所提升,故能帶工程的結果對此元件的特性是有幫助的。
第三個實驗目的在於找尋低溫的氮化矽層來源,以達到減低熱預算的目的。此章與第二章使用相同的電荷捕捉層,分為能帶工程堆疊和單層電荷捕捉層,唯一的差別是裡面的氮化矽層,使用較低溫的感應耦合電漿化學氣相沉積(ICPCVD),用此機台沉積的氮化矽薄膜當作電荷儲存層,製作在反轉式的奈米線快閃記憶體元件上,並與常見較高溫的低壓化學氣相沉積(LPCVD)之氮化矽電荷捕捉層元件做比較。結果發現兩機台沉積出的薄膜,因為元素中成分的不同而造成元件表現特性也有不同,ICP沉積的元件在寫抹特性上有較優良的表現;而LPCVD沉積的元件有較好的電荷保持力。不管哪種沉積方式,堆疊式的電荷捕捉層也能對各種電性表現有改善的效果。

The scale down of flash device is limited by its micro-miniature planar devices, which makes the process flow more complex. How to improve the electrical characteristics and increase the device density at the same time becomes two of the most important issues. Some approaches have been reported such as the BE-SONOS, nanowire channel structure, junctionless (JL) channel and 3D array flash memory devices. In this thesis, a 3D stacked structure is implemented in charge trapping (CT) flash memory devices with high-k stacks to increase device density. Besides, the performance can be improved by HfO2/Si3N4 stacked trapping layers.
In the first study, a CT flash device with stackable vertical gate structure is demonstrated for 3D memory integration. It is found that the program/erase (P/E) speeds and reliability of top and bottom devices are similar. Small program disturb and large disturb-free window are achieved. However, a conventional SONOS dielectric layer is used on JL channel flash memory devices. The erasing speed is still an issue and it need to be improved.
In the second study, the HfO2/Si3N4 stacked trapping layers are implemented on the same vertical gate structure as the first study. We want to know if the stacked trapping layers can improve the erasing performance on this device. The results show that the devices exhibit better programming speed and reliability. Besides, erasing speed becomes faster by using bandgap engineering trapping layers.
In the last study, although HfO2/Si3N4 stacked trapping layer plays an important role on flash memory, its thermal cycle in fabrication process may induce the degradation of trapping layers in 3D structure devices. To reduce thermal cycle, a low-temperature formed Si3N4 is used to replace the conventional one. The low-temperature formed Si3N4 is deposited by inductively coupled plasma chemical vapor deposition (ICPCVD), and a high-temperature formed one is conventionally deposited by a low pressure chemical vapor deposition (LPCVD). From the energy-dispersive spectroscopy, the compositions of Si3N4 layers are different, result in that P/E speed of ICP sample is faster than that of LPCVD one. Besides, LPCVD sample has better retention than ICP one.

摘要 I
致謝 V
目錄 VII
表目錄 VIII
圖目錄 VIII
第一章 序論 1
1.1 快閃記憶體元件 1
1.1.1 浮動閘極式快閃記憶體元件 1
1.1.2 電荷捕陷式快閃記憶體元件 2
1.2 多晶矽薄膜電晶體 3
1.3 多向式閘極結構與奈米線通道式快閃記憶體元件 4
1.4 高介電係數材料與能帶工程之介紹 5
1.4.1高介電係數材料 5
1.4.2能帶工程 6
1.5 無接面快閃記憶體元件介紹 7
1.6 三維結構可堆疊式NAND快閃記憶體 9
1.7 各章摘要 10
第二章 快閃記憶體元件製程與操作方法 17
2.1快閃記憶體元件製程 17
2.1.1 傳統平面式快閃記憶體元件 17
2.1.2 奈米線式通道快閃記憶體元件製程 18
2.2 快閃記憶體元件寫入與抹除方法 19
2.2.1 CHEI通道熱電子注入寫入 19
2.2.2 F-N穿隧寫入 20
2.2.3 F-N穿隧抹除 21
2.3 快閃記憶體元件可靠度特性 21
2.4 閘極與汲極之干擾特性 23
第三章 可堆疊式垂直閘極快閃記憶體元件特性研究 36
3.1 研究動機與背景 36
3.2 實驗 37
3.3 結果與討論 39
3.3.1元件寫入與抹除特性 39
3.3.2元件可靠度特性 40
3.3.3上下層元件寫入干擾特性 41
3.4 結論 42
第四章..具二氧化鉿/氮化矽堆疊的電荷捕捉層垂直閘極快閃記憶體元件特性研究……………………………………………………………………………………. 56
4.1 研究動機與背景 57
4.2 實驗 57
4.3 結果與討論 58
4.3.1元件汲極電流對閘極電壓作圖 58
4.3.2元件寫入與抹除特性 58
4.3.3元件可靠度特性 60
4.4 結論 61
第五章 .利用低溫沉積二氧化鉿/氮化矽堆疊的電荷捕捉層多晶矽奈米線快閃記憶體元件特性研究 70
5.1 研究動機與背景 71
5.2 實驗 72
5.3 結果與討論 73
5.3.1元件汲極電流對閘極電壓圖與成分分析 73
5.3.2元件寫入與抹除特性 74
5.3.3元件可靠度特性 77
5.4 結論 78
第六章 結論 91

參考文獻
[1] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.

[2] M. White, D. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine,, vol. 16, no. 4, Jul 2000, pp. 22 –31.

[3] M. White, Y. Yang, A. Purwar, and M. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” in Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, Jun 1996, pp. 52 –57.

[4] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, 2002, 2383–2390.

[5] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” Electron Devices, IEEE Transactions on, vol. 14, no. 9, p. 629, Sep 1967.

[6] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” Journal of Applied Physics, vol. 21, no. 1, pp. 49 –54, Jan 1950.

[7] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rdEd., Wiley Interscience, Hoboken, N.J. 2007.

[8] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012.

[9] N. Yamauchi, J. J. Hajjar and R. Reif, "Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film," IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991.

[10] T. H. Hsu, H. T. Lue, E. K. Lai, J. Y. Hsieh, S. Y. Wang, Y. L. Wu, Y. C. King, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A high-speed BE-SONOS NAND flash utilizing the field-enhancement effect of FinFET," in IEDM Tech. Dig. 2007, pp. 913-916.

[11] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros and M. Metz, "High-k metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, 2004.

[12] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu and C. Lu, "MA BE-SONOS: A bandgap engineered SONOS using metal gate and Al2O3 blocking layer to overcome erase saturation," in Non-Volatile Semiconductor Memory Workshop, 2007, pp. 88-89.

[13] Y.N.Tang,W.K.Chim, B.J.Chou, Byung, W.K.Choi,"Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer," Electron Devices, IEEE Transactions on, vol. 51, pp. 1143-1147, 2004.

[14] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. Chen, J. Ku, K. Y. Hsieh, R. Liu and C. Y. Lu, "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," in IEDM Tech. Dig. 2005, pp. 547-550.

[15] Z. H. Ye, K. S. Chang-Liao, T. C. Liu, T. K. Wang, P. J. Tzeng, C. H. Lin and M. J. Tsai, "A novel SONOS-type flash device with stacked charge trapping layer," Microelectron. Eng., vol. 86, pp. 1863-1865, 2009.

[16] J. P. Colinge, I. Ferain, A. Kranti, C. W. Lee, N. D. Akhavan, P. Razavi, R. Yan and R. Yu, "Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions," Sci. Adv. Mater., vol. 3, pp. 477-482, 2011.

[17] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, pp. 225-229, 2010.

[18] C. J. Su, T. K. Su, T. I. Tsai, H. C. Lin and T. Y. Huang, "A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires," Nanoscale Res. Lett., vol. 7, pp. 1-6, 2012.

[19] H. T. Lue, Y. H. Hsiao, P. Y. Du, S. C. Lai, T. H. Hsu, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, C. P. Lu, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu and C. Y. Lu, "A novel buried-channel FinFET BE-SONOS NAND flash with improved memory window and cycling endurance," in VLSI Symp. Tech. Dig. 2009, pp. 224-225.

[20] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, Li Zhang, Y. Iwata, R. Kirisawa, H. Aochi and A. Nitayama, "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices," in VLSI Symp. Tech. Dig. 2009, pp. 136-137.

[21] J. Jang, H. S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. H. Jeong, B. K. Son, D. W. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, C. Dewill, H. C. Moon, S. Hwang, J. W. Lee, Y. H. Son, U. Chung and W. S. Lee, "Vertical cell array using TCAT(terabit cell array transistor) technology for ultra high density NAND flash memory," in VLSI Symp. Tech. Dig. 2009, pp. 192-193.

[22] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell,” in Electron Devices Meeting, 2001. IEDM ’01. Technical Digest. International, 2001, pp. 32.6.1 –32.6.4.

[23] Z. H. Ye, K. S. Chang-Liao, C. Y. Tsai, T. T. Tsai and T. K. Wang, "Enhanced Operation in Charge-Trapping Nonvolatile Memory Device With Si3N4/Al2O3/HfO2 Charge-Trapping Layer," IEEE Electron Device Lett., vol. 33, pp. 1351-1353, 2012.

[24] T. Yan-Ny, W. K. Chim, C. Wee Kiong, J. Moon-Sig, and B. Jin Cho, "Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation," Electron Devices, IEEE Transactions on, vol. 53, pp. 654-662, 2006.

[25] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, et al., "Scaling of high-k dielectrics towards sub-1nm EOT," in VLSI Technology, Systems, and Applications, 2003 International Symposium on, 2003, pp. 247-250.

[26] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” Electron Devices, IEEE Transactions on, vol. 31, no. 9, pp. 1116 – 1125, Sep 1984.

[27] V.A. Gritsenko; N.D. Dikovskaja; K.P. Mogilnikov, "Band diagram and conductivity of silicon oxynitride films, "Thin Solid Films Volume 51, Issue 3, 15 June 1978, Pages 353–357

[28] M. H. White, Y. Yang, P. Ansha, and M. L. French, "A low voltage SONOS nonvolatile semiconductor memory technology," Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 20, pp. 190-195, 1997.

[29] Jeng-Hwa Liao; Jung-Yu Hsieh; Hang-Ting Lue; Ling-Wu Yang; Tahone Yang; Kuang-Chao Chen; Chih-Yuan Lu, "Performance and reliability optimizations of BE-SONOS NAND Flash using SiON bandgap-tuning tunneling barrier," Reliability Physics Symposium (IRPS), 2010 IEEE International , vol., no., pp.639,643, 2-6 May 2010

[30] Xin Guo; T-P,Ma,"Tunneling leakage current in oxynitride: dependence on oxygen/nitrogen content," Electron Device Letters, IEEE , vol.19, no.6, pp.207,209, June 1998

[31] Teng-Hao Yeh; Pei-Ying Du; Tzu-Hsuan Hsu; Wei-Chen Chen; Hang-Ting Lue; Yen-Hao Shih; Yu-De Huang; Han-Hui Hsu; Lo-Yueh Lin; Ya-Chin King; Tahone Yang; Chih-Yuan Lu, "Increasing VG-type 3D NAND flash cell density by using ultra-thin poly-silicon channels," Memory Workshop (IMW), 2013 5th IEEE International , vol., no., pp.139,142, 26-29 May 2013

[32] Y. Sun, H. Y. Yu, N. Singh, K. C. Leong, E. Quek, G. Q. Lo and D. L. Kwong, "Demonstration of memory string with stacked junction-less SONOS realized on vertical silicon nanowire," in IEDM Tech. Dig. 2011, pp. 9.7.1-9.7.4.

[33] T. Yan-Ny, W. K. Chim, C. Wee Kiong, J. Moon-Sig, and B. Jin Cho, "Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation," Electron Devices, IEEE Transactions on, vol. 53, pp. 654-662, 2006.

[34] Ping-Hung Tsai; Kuei-Shu Chang-Liao; Chu-Yung Liu; Tien-Ko Wang; Tzeng, P. -J; Lin, C.H.; Lee, L.S.; Tsai, M.-J., "Novel SONOS-Type Nonvolatile Memory Device With Optimal Al Doping in HfAlO Charge-Trapping Layer," Electron Device Letters, IEEE, vol. 29, pp. 265-268, 2008.

[35] C. Sung-Jin, D.-I. Moon, J. P. Duarte, K. Sungho, and Y.-K. Choi, "A novel junctionless all-around-gate SONOS device with a quantum nanowire on a bulk substrate for 3D stack NAND flash memory," in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 74-75.

[36] Kuzum, D.; Pethe, A.J.; Krishnamohan, Tejas; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; K.C. Saraswat, "Interface-Engineered Ge (100) and (111), N- and P-FETs with High Mobility," Electron Devices Meeting, 2007. IEDM 2007. IEEE International , vol., no., pp.723,726, 10-12 Dec. 2007

[37] Huet, K.; Toque-Tresonne, I.; Mazzamuto, F.; Emeraud, T.; Besaucele, H., "Laser Thermal Annealing: A low thermal budget solution for advanced structures and new materials," Junction Technology (IWJT), 2014 International Workshop on , vol., no., pp.1,6, 18-20 May 2014

,
[38] Y. Sun, H.Y. Yu,*N. Singh1, K. C. Leong, E. Quek, G.Q. L, D. L. Kwong , "Demonstration of memory string with stacked junction-less SONOS realized on vertical silicon nanowire," Electron Devices Meeting (IEDM), 2011 IEEE International , vol., no., pp.9.7.1,9.7.4, 5-7 Dec. 2011

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔