跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃令祺
研究生(外文):Huang, Ling Chi
論文名稱:貝氏定理影像重建演算法用於飛行時間正子斷層掃描之研究
論文名稱(外文):A Study of Bayesian Image Reconstruction Algorithms for Time-of-Flight Positron Emission Tomography
指導教授:許靖涵
指導教授(外文):Hsu, Ching Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:貝氏定理影像重建演算法飛行時間正子斷層掃描
外文關鍵詞:Bayes' theoremImage Reconstruction AlgorithmsTime-of-Flight PET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
貝氏定理影像重建演算法是1990年Green將最大相似度評估法和最大事後機率評估法結合所產生的一步延遲期望值最大演算法(One-Step-Late Expectation Maximum, OSL),使用在正子斷層掃描上進行影像重建時可以搭配不同的影像事前機率(Image prior)來做不同方式的雜訊抑制,但在這個過程中影像事前機率的影響有可能會使重建影像過度平滑(over-smoothing)或是在邊緣部分產生其他問題。飛行時間正子斷層掃描(Time-of-Flight PET)能提供互毀光子被偵檢器接收到的時間差,增加重建影像的解析度,提升影像訊雜比。在本研究中提出將貝氏定理影像重建演算法用於重建TOF PET影像,包含TOF-OSL與TOF-OSEM-OSL重建法,並和傳統PET使用OSL與OSEM-OSL重建法所重建的影像做比較,利用TOF技術改善貝氏定理影像重建法的缺點,在保留影像事前機率的貢獻下,增加了TOF的時間資訊優勢,進而提升影像品質。
A Bayesian image reconstruction algorithm, One-Step-Late (OSL) algorithm which combines maximum likelihood expectation maximization (MLEM) with maximum a posteriori (MAP) estimation, was derived by Green in 1990. In Positron emission tomography (PET), image reconstruction using OSL combines the likelihood function with image prior. Use different way to reduce the effect of noise in the data with different image prior. However, image prior may over-smooth small objects and edges. Time-of-Flight PET system can provide time difference of annihilation photon pair and this TOF characteristic can improve image resolution and signal-to-noise ratio (SNR). In this study, we proposed a TOF iterative image reconstruction algorithm based on the Bayesian scheme. Using TOF technique can improve the image quality of image which reconstructed by Bayesian image reconstruction algorithm. The results of TOF-OSL and TOF-OSEM-OSL would be compared with the results of OSL and OSEM-OSL. TOF Bayesian image reconstruction algorithm can provide not only noise reduction but also can improve the image quality in PET.
第一章 前言…………………………………………………………..…1
第二章 正子斷層掃描…………………………………………………..5
2-1成像原理………………….……………………………………..5
2-2影響成像的物理因素…….……………………………………..6
2-3訊號收集與排列………….…………………………………..…7
2-4傳統疊代式影像重建…………………………………………...8
2-4.1資料模型…………………………………………………..8
2-4.2最大相似度評估…………………………………..............9
2-4.3最大相似度期望值最大演算法………………………....10
2-4.4序列子集期望值最大演算法…………………..………..11
2-5貝氏定理於影像重建中的運用……………………………….12
2-5.1最大事後機率評估法…………..………………………..12
2-5.2一步延遲期望值最大演算法…………………..………..13
2-5.3吉布斯分布………………………………………………14
2-5.4最大懲罰相似度評估………..…………………………..15
2-5.5影像事前機率……………………………………………15
第三章 飛行時間正子斷層掃描………………………………………18
3-1 TOF PET 系統發展………………………………………........18
3-2飛行時間(Time-of-Flight)技術原理…………………………...19
3-3偵測機率矩陣………………………………………………….21
3-3.1空間幾何關係機率矩陣…………………………………21
3-3.2時間解析度機率分布……………………………………22
3-3.3 TOF PET 機率矩陣……………………………………..24
3-4 TOF PET的優勢……………………………………………….26
第四章 TOF PET影像重建法…………………………………………30
4-1 TOF影像重建發展…………………………………………….30
4-2偵收光子期望值……………………….………………………31
4-3 TOF最大相似度評估………………………………………….32
4-4 TOF PET最大相似度期望值最大演算法…………………….34
4-5 TOF PET序列子集期望值最大演算法……………………….36
4-6 TOF最大事後機率評估與最大懲罰相似度函數…………….38
4-7 TOF PET一步延遲期望值最大演算法……………………….40
4-8 TOF PET序列子集一步延遲期望值最大演算法…………….41
第五章 實驗設計………………………………………………………42
5-1實驗平台…………………………………………………….....43
5-2假體設計……….………………………………………………45
5-3 PET正弦圖…………………………………………………….46
5-4影像指標……………………………………………………….47
第六章 實驗結果與討論………………………………………………50
6-1傳統PET和TOF PET之演算法驗證實驗………………….....50
6-1.1無帕松雜訊模擬實驗……………………………………50
6-1.2加入帕松雜訊模擬實驗…………………………………56
6-2貝氏定理用於TOF與Non-TOF影像重建實驗………………62
6-2.1 Quadratic事前機率…………………………………...…67
6-2.2 L1-Norm事前機率………………………………………75
6-2.3 Huber事前機率………………………………………….83
6-2.4 Geman and McClure事前機率………………………….91
6-2.5 Relative difference事前機率……………………………99
6-3 綜合討論……………………………………………………..108
第七章 結論與未來方向……………………………………………..112
參考文獻………………………………………………………………114

[1] L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Transactions on Medical Imaging, Vol. MI-1, No. 2, pp. 113-122, October 1982.
[2] E. Levitan and G. T. Herman, “A Maximum A Posteriori Probability Expectation Maximization Algorithm for Image Reconstruction in Emission Tomography, ” IEEE Transactions on Medical Imaging, Vol. MI-6, No. 3, pp. 185-192, September 1987.
[3] H. M. Hudson and R. S. Larkin, “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data,” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp. 601-609, December 1994.
[4] T. K. Lewellen, “Time-of-Flight PET, ” Seminars in Nuclear Medicine, Vol. 28, No. 3, pp. 268-275, July 1998.
[5] W. W. Moses, “Time of Flight in PET Revisited,” IEEE Transactions on Nuclear Science, Vol. 50, No. 5, pp. 1325-1330, October 2003.
[6] C. L. Melcher and J. S. Schweitzer, “Cerium-doped Lutetium Oxyorthosilicate: A Fast, Efficient New Scintillator, ” IEEE Transactions on Nuclear Science, Vol. 39, No. 4, pp. 502-505, August 1992.
[7] D. L. Snyder, L. J. Thomas and M. M. Ter-Pogossian, “A Mathematical Model for Positron-Emission Tomography Systems Having Time-of-Flight Measurements,” IEEE Transactions on Nuclear Science, Vol. NS-28, No. 3, pp. 3575-3583, June 1981.
[8] M. Conti, B. Bendriem, M. Casey et al. “First experimental results of time-of-flight reconstruction on an LSO PET scanner,” Physics in Medicine and Biology, Vol. 50, No. 19, pp. 4507-4526, September 2005.
[9] R. M. Manjeshwar, Y. Shao and F. P. Jansen, “Image quality improvements with time-of-flight positron emission tomography for molecular imaging,” IEEE International Conference on Acoustics, Speech, and Signal Proceedings. Vol. 5, pp. v/853-v/856, 2005.
[10] P. J. Green, “Bayesian Reconstructions From Emission Tomography Data Using a Modified EM Algorithm,” IEEE Transactions on Nuclear Science, Vol. 9, No. 1, pp. 84-93, March 1990.
[11] T. J. Hebert and R. Leahy, “Statistic-Based MAP Image Reconstruction from Poisson Data Using Gibbs Priors,” IEEE Transactions on Signal Processing, Vol. 40, No. 9, pp. 2290-2303, September 1992.
[12] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 6, pp. 721-741, November 1984.
[13] J. Besag, “Towards Bayesian Image Analysis,” Journal of Applied Statistics, Vol. 16, No. 3, pp. 395-407, 1989.
[14] E. U. Mumcuogluyz, R. M. Leahy and S. R. Cherryz, “Bayesian reconstruction of PET images: methodology and performance analysis,” Phys. Med. Biol. Vol. 41, pp. 1777-1807, 1996.
[15] S. Geman and D. E. McClure, “Bayesian Image Analysis: An Application to Single Photon Emission Tomography,” in Proc. Statist. Comput. Sect. Amer. Statist. Assoc. pp. 12-18, 1985.
[16] J. Nuyts, D. Beque ́, P. Dupont and L. Mortelmans, “A Concave Prior Penalizing Relative Differences for Maximum-a-Posteriori Reconstruction in Emission Tomography, ” IEEE Transactions on Nuclear Science, Vol. 49, No. 1, pp. 56-60, February 2002.
[17] C. M. Kao, “Windowed image reconstruction for time-of-flight positron emission tomography, ” Physics in Medicine and Biology, Vol. 53, No. 13, pp. 3431-3445, June 2008.
[18] Maurizio Conti, “Effect of Randoms on Signal-to-Noise Ratio in TOF PET, ” IEEE Transactions on Nuclear Science, Vol. 53, No. 3, pp. 1188-1193, June 2006.
[19] D. L. Snyder, D. G. Politte, “Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements, ” IEEE Transactions on Nuclear Science, Vol. Ns-20, No. 3, pp. 1843-1849, June 1983.
[20] D. G. Politte, “Image Improvements in Positron-Emission Tomography Due to Measuring Differential Time-of-Flight and Using Maximum-Likelihood Estimation, ” IEEE Transactions on Nuclear Science, Vol. 37, No. 2, pp. 737-742, April 1990.
[21] M. Defrise, M. E. Casey, C. Michel and M. Conti, “Fourier rebinning of time-of-flight PET data, ” Physics in Medicine and Biology, Vol. 50, pp. 2749-2763, May 2005.
[22] M. Defrise, V. Panin, C. Michel and M. E. Casey, “Discrete axial rebinning for time-of-flight PET, ” IEEE Nuclear Science Symposium Conference Record, M10-2, pp. 2370-2374, 2006.
[23] M. E. Daube-Witherspoon, S. Surti, S. Matej, et al., “Influence of time-of-flight kernel accuracy in TOF-PET reconstruction, ” IEEE Nuclear Science Symposium Conference Record, M04-3, pp. 1723-1727, November 2006.
[24] S. Vandenberghe, M. E. Daube-Witherspoon, R. M. Lewitt et al., ”Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing, ” Physics in Medicine and Biology, Vol. 51, No. 6, pp. 1603-1621, March 2006.
[25] D. J. Kadrmas, M. E. Casey, M. Conti et al., “Impact of time-of-flight on PET tumor detection, ” The Journal of Nuclear Medicine, Vol. 50, No. 8, pp. 1315-1323, April 2009.
[26] C. Lois, B. W. Jakoby, M. J. Long et al., “An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging, ” The Journal of Nuclear Medicine, Vol. 51, No. 2, pp. 237-245, February 2010.
[27] B.W. Jakoby, Y. Bercier, M. Conti et al., “Performance Investigation of a Time-of-Flight PET/CT Scanner, ” IEEE Nuclear Science Symposium Conference Record, M06-39, pp. 3738-3743, 2008.
[28] R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array, ” Medical Physics, Vol. 12, No. 2, pp. 252-255, April 1985.
[29] J. M. Wilson, T. G. Turkington, “TOF-PET Small-Lesion Image Quality Measured Over a Range of Phantom Sizes, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 60, No. 3, pp. 1589-1595, June 2013.
[30] J. M. Wilson, T. G. Turkington, “Multisphere phantom and analysis algorithm for PET image quality assessment, ” Physics in Medicine and Biology, Vol. 53, No. 12, pp. 3267-3278, May 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top