|
【參考文獻】 1. Group, U.C.S.W., United States Cancer Statistics: 1999–2011 incidence and mortality web-based report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute, 2014. 2. Jemal, A., et al., Global cancer statistics. CA: a cancer journal for clinicians, 2011. 61(2): p. 69-90. 3. Rigel, D.S., J. Russak, and R. Friedman, The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA: a cancer journal for clinicians, 2010. 60(5): p. 301-316. 4. Gray-Schopfer, V., C. Wellbrock, and R. Marais, Melanoma biology and new targeted therapy. Nature, 2007. 445(7130): p. 851-857. 5. Garrison, M. and L. Nathanson. Prognosis and staging in melanoma. in Seminars in oncology. 1996. 6. Balch, C.M., et al., Final version of 2009 AJCC melanoma staging and classification. Journal of Clinical Oncology, 2009. 27(36): p. 6199-6206. 7. Avril, M., et al., Regression of primary melanoma with metastases. Cancer, 1992. 69(6): p. 1377-1381. 8. Sober, A.J. and C.M. Balch, Method of biopsy and incidence of positive margins in primary melanoma. Annals of surgical oncology, 2007. 14(2): p. 274-275. 9. Harland, C., et al., Differentiation of common benign pigmented skin lesions from melanoma by high‐resolution ultrasound. British Journal of Dermatology, 2000. 143(2): p. 281-289. 10. Solis, O.J., et al., Intracerebral metastatic melanoma: CT evaluation. Computerized tomography, 1977. 1(2): p. 135-143. 11. Pennasilico, G., et al., Magnetic resonance imaging in the diagnosis of melanoma: in vivo preliminary studies with dynamic contrast-enhanced subtraction. Melanoma research, 2002. 12(4): p. 365-371. 12. Miao, Y., et al., 203Pb-Labeled α-Melanocyte–Stimulating Hormone Peptide as an Imaging Probe for Melanoma Detection. Journal of Nuclear Medicine, 2008. 49(5): p. 823-829. 13. Miao, Y., K. Benwell, and T.P. Quinn, 99mTc-and 111In-labeled α-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. Journal of Nuclear Medicine, 2007. 48(1): p. 73-80. 14. Doss, L., Radiation therapy in malignant melanoma. Missouri medicine, 1979. 76(12): p. 641. 15. Bajetta, E., et al. Metastatic melanoma: chemotherapy. in Seminars in oncology. 2002. Elsevier. 16. Mackensen, A., et al., Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. Journal of Clinical Oncology, 2006. 24(31): p. 5060-5069. 17. Morton, D., et al., Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery, 1970. 68(1): p. 158-63; discussion 163-4. 18. Eigentler, T.K., et al., Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. The lancet oncology, 2003. 4(12): p. 748-759. 19. Johnson, T.M., et al., Advances in melanoma therapy. Journal of the American Academy of Dermatology, 1998. 38(5): p. 731-741. 20. Overgaard, J., The role of radiotherapy in recurrent and metastatic malignant melanoma: a clinical radiobiological study. International Journal of Radiation Oncology* Biology* Physics, 1986. 12(6): p. 867-872. 21. Albert, D.M., A.S. Niffenegger, and J.K. Willson, Treatment of metastatic uveal melanoma: review and recommendations. Survey of ophthalmology, 1992. 36(6): p. 429-438. 22. Rosenberg, S.A., et al., Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. The New England journal of medicine, 1988. 319(25): p. 1676-1680. 23. Parkinson, D.R., et al., Interleukin-2 therapy in patients with metastatic malignant melanoma: a phase II study. Journal of Clinical Oncology, 1990. 8(10): p. 1650-1656. 24. Yuan, J., et al., CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences, 2008. 105(51): p. 20410-20415. 25. Barranco, S., M. Romsdahl, and R. Humphrey, The radiation response of human malignant melanoma cells grown in vitro. Cancer research, 1971. 31(6): p. 830-833. 26. Röckmann, H. and D. Schadendorf, Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Oncology Research and Treatment, 2003. 26(6): p. 581-587. 27. Tattersall, M., Cancer Chemotherapy—Fundamental Concepts and Recent Advances. Journal of clinical pathology, 1976. 29(4): p. 367. 28. Coates, A., et al., On the receiving end—patient perception of the side-effects of cancer chemotherapy. European Journal of Cancer and Clinical Oncology, 1983. 19(2): p. 203-208. 29. Ozols, R.F., et al., Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. Journal of Clinical Oncology, 2003. 21(17): p. 3194-3200. 30. Schiller, J.H., et al., Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. New England Journal of Medicine, 2002. 346(2): p. 92-98. 31. Roberts, J., The mechanism of action of anti-tumor platinum compounds. Prog. Nucleic. Acid Res. Mol. Biol., 1979. 22: p. 71-133. 32. Sorenson, C.M. and A. Eastman, Influence of cis-diamminedichloroplatinum (II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells. Cancer Research, 1988. 48(23): p. 6703-6707. 33. Barry, M.A., C.A. Behnke, and A. Eastman, Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochemical pharmacology, 1990. 40(10): p. 2353-2362. 34. Florea, A.-M. and D. Büsselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011. 3(1): p. 1351-1371. 35. Arany, I. and R.L. Safirstein. Cisplatin nephrotoxicity. in Seminars in nephrology. 2003. Elsevier. 36. Schweitzer, V.G., Cisplatin-induced ototoxicity: the effect of pigmentation and inhibitory agents. The Laryngoscope, 1993. 103(4 Pt 2): p. 1-52. 37. Nematbakhsh, M., et al., A histopathological study of nephrotoxicity, hepatoxicity or testicular toxicity: Which one is the first observation as side effect of Cisplatin-induced toxicity in animal model? Journal of nephropathology, 2012. 1(3): p. 190. 38. Singh, U.P., et al., Role of resveratrol-induced CD11b+ Gr-1+ myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3+ T cells and amelioration of chronic colitis in IL-10−/− mice. Brain, behavior, and immunity, 2012. 26(1): p. 72-82. 39. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 2009. 9(3): p. 162-174. 40. Peranzoni, E., et al., Myeloid-derived suppressor cell heterogeneity and subset definition. Current opinion in immunology, 2010. 22(2): p. 238-244. 41. Nagaraj, S., et al., Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature medicine, 2007. 13(7): p. 828-835. 42. Corzo, C.A., et al., HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of experimental medicine, 2010. 207(11): p. 2439-2453. 43. Highfill, S.L., et al., Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1–dependent mechanism that is up-regulated by interleukin-13. Blood, 2010. 116(25): p. 5738-5747. 44. Filipazzi, P., et al., Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor–based antitumor vaccine. Journal of Clinical Oncology, 2007. 25(18): p. 2546-2553. 45. Zea, A.H., et al., Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer research, 2005. 65(8): p. 3044-3048. 46. Granot, Z., et al., Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 2011. 20(3): p. 300-14.
|