跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李易桓
研究生(外文):LI, Yi Huan
論文名稱:雙模式 PET/SPECT雙同位素同步造影之散射修正
論文名稱(外文):Down-scatter Correction for Simultaneous Dual Isotopes PET/SPECT Imaging with sharing Detector
指導教授:莊克士莊克士引用關係林信宏林信宏引用關係
指導教授(外文):Chuang, Keh ShihLin, Hsin Hon
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:雙同位素掃描散射修正正子斷層掃描單光子斷層掃描
外文關鍵詞:Dual isotope scanScatter correctionPETSPECTSharing Detectorslit-slat collimatorpinhole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
正子斷層掃描(PET)及單光子斷層掃描(SPECT)為核子醫學中兩種成像方式,此兩種造影方式各有其功能及特性,而結合PET/SPECT進行雙模式同時造影可同時獲取兩種不同的功能性影像,其原理是利用PET及SPECT兩種核種同位素同時進行掃描,稱為雙同位素同時掃描(dual isotope simultaneous acquisition, DISA),此技術使臨床及臨床前應用更為廣泛。但雙同位素同時掃描會產生散射污染的問題,較高能量光子會與物質發生作用產生散射(down-scatter),進而影響使用低能窗成像的影像品質,所以必須進行散射校正。
本研究設計特定厚度的準直儀置入PET偵檢器中,利用不同能量間穿透性不同,高能光子幾乎能直接穿透準直儀,經由偵測偶合事件成像,而低能光子只能從我們所設計的針孔穿出,經由旋轉準直儀即可收取不同角度資訊重建出SPECT影像,即可達成雙同位素同時掃描的目標。另外本研究提出新型的散射修正法,此方法與傳統的散射修正法相較,無需額外收取能窗來評估散射,而是直接使用PET能窗推估散射至低能窗所造成的影響,修正後影像更加接近無散射汙染時的標準影像,且雜訊較小。本方法是利用預先掃描均勻假體,建立PET主能窗與欲散射修正能窗間的轉換矩陣(transform matrix)及縮放因子(scaling factor)。利用此兩種因子,在往後DISA掃描中,即可由PET主能窗資訊直接推估散射,使低能窗影像能減去散射所造成的影響。此外本研究分別以Three-rod假體、非均質假體、MOBY假體探討了散射修正法對於雙同位素間活度比、活度分布、衰減材質及實際臨床應用等問題;由結果顯示本方法並不會因這些因素改變而影響散射修正的效果且在修正影像上也較傳統三能窗散射修正法來的準確。

The capability of SPECT imaging developed on an preclinical PET scanner can provide a combined PET/SPECT dual modality imaging environment, potentially opening the opportunity for many new clinical and preclinical applications, However, an obstacle to the implementation of the protocol is the interference of signal between two isotope, particularly in the down-scatter from high energy gamma-ray into low energy window. In this work, we developed a new down-scatter correction method for simultaneous dual isotopes PET/SPECT imaging. A Siemens Inveon preclinical PET with a slit-slat collimator insert was modeled using the GATE/MPHG Monte Carlo simulation software developed by our laboratory. For dual imaging capability, dual energy window settings at 120-160 keV and 350-650keV were used to acquired SPECT and PET imaging, respectively. The procedure of the proposed method includes two steps: (1) A 18F uniform phantom needs to be acquired for establishing a transform function and a scaling factor between the two energy windows beforehand. (2) During dual isotopes simultaneous acquisition (DISA), the down-scatter distribution can be estimated by multiplying the acquired projections at 350-650keV with the transform function, and then the absolute scatter amount can be finally obtained by scaling the resulting scatter distribution using the scaling factor. Various phantoms were conducted to compare the image quality using the proposed method and triple energy window method, which is common used for scatter correction in DISA. The results indicated that image generated by our method is close to pure 99mTc isotope imaging, and the proposed method always outperforms the conventional triple energy window (TEW) method in terms of coefficient of variation (15.08% vs. 21.04%) and contrast recovery coefficient (0.848 vs. 0.58). In conclusion, we have developed a novel down-scatter correction method for DISA imaging. It is expected that the method can also be applied to dual isotopes SPECT imaging with high energy peaks that down-scattered to low photopeak data, such as Tc-99m/Tl-201
第一章 緒論
1.1 前言
1.2 研究動機與目的
1.3 論文架構
第二章 文獻回顧
2.1 核子醫學造影(Nuclear Medicine Imaging)
2.1.1 單光子發射電腦斷層掃描(Single photon Emission Computed Tomography, SPECT)
2.1.2 正子斷層掃描(Positron emission tomography, PET)
2.2 光子與物質作用(Interaction of Radiation with Matter)
2.2.1 合調散射(Coherent Scattering)
2.2.2 光電效應
2.2.3 康普吞散射(Compton scattering)
2.2.4 成對發生(Pair production)
2.3 雙同位素同時造影(Dual isotope simultaneous acquisition, DISA)
2.3.1 小動物雙同位素同時造影
2.3.2 Cross-talk scatter
2.4 多能窗散射修正法
2.5 摺積減贅法(Convolution-subtraction method)
第三章 材料與方法
3.1 康普吞散射在block detector上之影響
3.1.1 輻射訊號記錄方式
3.1.2 LSO晶體背景活度
3.2 蒙地卡羅模擬(Monte Carlo simulation, MCS)
3.2.1 造影系統介紹及slit-slat 準直儀設計
3.2.2 Slit-slat collimator SPECT掃描流程
3.2.3 DISA-SPECT影像評估
3.3 雙能窗直接散射修正法(PEW)
3.3.1 能譜分析
3.3.2 點射源及均勻假體
3.3.3 轉換矩陣及轉換因子
3.4 三能窗法
3.4.1 三能窗法在雙同位素造影問題
3.4.2三能窗法能窗範圍調整
3.5 DISA模擬
3.5.1 LSO background
3.6 數位假體
3.6.1 Three-rod假體
3.6.2 非均質假體
3.6.3 MOBY假體
3.7 假體實驗雙同位素造影
3.7.1 實驗架構及流程
第四章 結果
4.1三能窗法能窗範圍調整
4.2 數位假體
4.2.1點射源及均勻假體
4.2.4 MOBY假體
4.3假體實驗結果
第五章 討論
5.1活度比例及活度分布對散射校正的影響(Three-rod假體、非均質假體)
5.2散射修正對於不同物質之影響(非均質假體)
5.3實際小動物可行性評估(MOBY假體)
5.4與三能窗法相較之優勢
5.5 PEW法未來可應用範圍
5.6 PEW法限制
第六章 結論
第七章 參考文獻
Andreyev A and Celler A 2011 Dual-isotope PET using positron-gamma emitters Physics in medicine and biology 56 4539
Axelsson B, Msaki P and Israelsson A 1984 Subtraction of Compton-scattered photons in single-photon emission computerized tomography Journal of nuclear medicine: official publication, Society of Nuclear Medicine 25 490-4
Bailey D, Hutton B, Meikle S, Fulton R and Jackson C 1989 Iterative scatter correction incorporating attenuation data Eur J Nucl Med 15 452
Baum K G and Helguera M 2007 Execution of the SimSET Monte Carlo PET/SPECT simulator in the condor distributed computing environment Journal of digital imaging 20 72-82
Berman D S, Kiat H, Friedman J D, Wang F P, Van Train K, Matzer L, Maddahi J and Germano G 1993 Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study Journal of the American College of Cardiology 22 1455-64
Blumenthal G R and Gould R J 1970 Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases Reviews of Modern Physics 42 237
Chapman S E, Diener J M, Sasser T A, Correcher C, González A J, Van Avermaete T and Leevy W M 2012 Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol American journal of nuclear medicine and molecular imaging 2 405
Cherry S R, Sorenson J A and Phelps M E 2012 Physics in nuclear medicine: Elsevier Health Sciences)
De Jong H, Beekman F, Viergever M and van Rijk P 2002 Simultaneous 99mTc/201Tl dual-isotope SPET with Monte Carlo-based down-scatter correction European journal of nuclear medicine and molecular imaging 29 1063-71
Devous Sr M D, Payne J K and Lowe J L 1992 Dual-isotope brain SPECT imaging with technetium-99m and iodine-123: clinical validation using xenon-133 SPECT Journal of nuclear medicine: official publication, Society of Nuclear Medicine 33 1919-24
El Fakhri G, Trott C, Sitek A, Bonab A and Alpert N 2013 Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences Mol Imaging Biol 15 666-74
Goorden M C, van der Have F, Kreuger R, Ramakers R M, Vastenhouw B, Burbach J P H, Booij J, Molthoff C F and Beekman F J 2013 VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET Journal of Nuclear Medicine 54 306-12
Hannequin P, Mas J and Germano G 2000 Photon energy recovery for crosstalk correction in simultaneous (99m) Tc/(201) Tl imaging The Journal of Nuclear Medicine 41 728
He X, Cheng L, Fessler J and Frey E C 2011 Regularized image reconstruction algorithms for dual-isotope myocardial perfusion SPECT (MPS) imaging using a cross-tracer prior Medical Imaging, IEEE Transactions on 30 1169-83
Ichihara T, Ogawa K, Motomura N, Kubo A and Hashimoto S 1993 Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT Journal of nuclear medicine: official publication, Society of Nuclear Medicine 34 2216-21
Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, Avner S, Barbier R, Bardies M and Bloomfield P 2004 GATE: a simulation toolkit for PET and SPECT Physics in medicine and biology 49 4543
Knešaurek K 1994 A new dual‐isotope convolution cross‐talk correction method: A TL‐201/TC‐99m SPECT cardiac phantom study Medical Physics 21 1577-83
Knesaurek K and Machac J 1997 Three-window transformation cross-talk correction for simultaneous dual-isotope imaging Journal of nuclear medicine: official publication, Society of Nuclear Medicine 38 1992-8
Knešaurek K and Machac J 1997 Enhanced cross-talk correction technique for simultaneous dual-isotope imaging: A TL-201/Tc-99m myocardial perfusion SPECT dog study Medical Physics 24 1914-23
Lacoeuille F, Hindré F, Denizot B, Bouchet F, Legras P, Couturier O, Askiénazy S, Benoit J P and Le Jeune J J 2010 New starch-based radiotracer for lung perfusion scintigraphy European journal of nuclear medicine and molecular imaging 37 146-55
Lee S, Gregor J, Kennel S J, Osborne D R and Wall J 2015 GATE Validation of Standard Dual Energy Corrections in Small Animal SPECT-CT
Lin H-H, Chuang K-S, Lin Y-H, Ni Y-C, Wu J and Jan M-L 2014 Efficient simulation of voxelized phantom in GATE with embedded SimSET multiple photon history generator Physics in medicine and biology 59 6231
Msaki P, Axelsson B, Dahl C M and Larsson S A 1987 Generalized scatter correction method in SPECT using point scatter distribution functions Journal of nuclear medicine: official publication, Society of Nuclear Medicine 28 1861-9
Partovi F 1964 Deuteron photodisintegration and np capture below pion production threshold Annals of Physics 27 79-113
Rutao Y, Beaudoin J F, Xiao D, Cadorette J and Lecomte R Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE,23-29 Oct. 2011 2011), vol. Series) pp 2418-21
Saoudi A and Lecomte R 1999 A novel APD-based detector module for multi-modality PET/SPECT/CT scanners Nuclear Science, IEEE Transactions on 46 479-84
Sitek A, Andreyev A and Celler A Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE,2011), vol. Series): IEEE) pp 4323-6
Sohlberg A, Watabe H and Iida H 2008 Three-dimensional SPECT reconstruction with transmission-dependent scatter correction Annals of nuclear medicine 22 549-56
Sychra J and Blend M JOURNAL OF NUCLEAR MEDICINE,1996), vol. Series 37): SOC NUCLEAR MEDICINE INC 1850 SAMUEL MORSE DR, RESTON, VA 22090-5316) pp 984-
Vaquero J J, Seidel J, Siegel S, Gandler W R and Green M V 1998 Performance characteristics of a compact position-sensitive LSO detector module Medical Imaging, IEEE Transactions on 17 967-78
Wang W-T, Tsui B M, Lalush D S, Tocharoenchai C and Frey E C 2005 Optimization of acquisition parameters for simultaneous 201 Tl and 99m Tc dual-isotope myocardial imaging Nuclear Science, IEEE Transactions on 52 1227-35
Yang Y K, Yu L, Yeh T L, Chiu N T, Chen P S and Lee I H 2004 Associated alterations of striatal dopamine D2/D3 receptor and transporter binding in drug-naive patients with schizophrenia: a dual-isotope SPECT study American Journal of Psychiatry 161 1496-8
Yao R, Deng X, Beaudoin J-F, Ma T, Cadorette J, Cao Z and Lecomte R 2013 Initial evaluation of LabPET/SPECT dual modality animal imaging system IEEE Trans Nucl Sci 60 76-81
Yao R, Ma T and Shao Y 2008 Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner Physics in medicine and biology 53 4399

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊