(3.215.180.226) 您好!臺灣時間:2021/03/06 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴士為
研究生(外文):Shi-Wei Dai
論文名稱:由樁負載及步階式阻抗四模態共振器建構雙頻微帶線濾波器之研製
論文名稱(外文):Design and Fabrication of a Dual-Band Microstrip Filter Using Quad-Mode Stub-Loaded and Stepped Impedance Resonator
指導教授:黃俊岳翁敏航翁敏航引用關係
指導教授(外文):Chun-Yueh HuangMin-Hang Weng
口試委員:黃俊岳王鴻猷翁敏航楊茹媛
口試委員(外文):Chun-Yueh HuangHong-You WangMin-Hang WengRu-Yuan Yang
口試日期:2015-01-13
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:35
中文關鍵詞:多模態樁負載多模態步階式阻抗無線區域網路
外文關鍵詞:Stub-loaded (SLR)dual-bandmulti-modestepped-impedance (SIR)WLAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一雙頻帶通微帶線濾波器,由樁負載(Stub-loaded)和步階式阻抗(Stepped impedance)多模態共振器所組成,採用多模共振器在單一共振器結構產生多模態組成通帶以節省濾波器之面積。多模態共振器由具有兩段對稱位置上的樁負載實現,共振頻率由樁段的電子長度決定。所提出之共振器結構為水平對稱,共振頻率之分析可藉由奇、偶模態來觀察與設計。另外,本文藉由步階式阻抗將混附波頻率推移的特性來設計雙頻帶通微帶線濾波器,以獲得更寬的止帶抑制非必要通帶。本文提出兩種適用於無線區域網路(WLAN, 2.4/5.2 GHz)頻帶之雙頻帶通微帶線濾波器,經實作與量測結果顯示原型濾波器特性:通帶插入損與BWR分別為1.43 dB,14.85% (@2.4 GHz)及1.34 dB,12.95% (@5.2 GHz);通帶間反射損失為−20 dB。另外,經四分之一波長開路樁改善通帶間隔離止帶反射損失至−40 dB,量測結果在通帶插入損失分別為0.82 dB及1.17 dB,BWR分別為17.37%及14.04%。
In this thesis, we present a dual-band microstrip bandpass filter, which is constructed by a quad-mode stub-loaded resonator (SLR). Since a multi-mode resonator is able to produce multi-resonance within a single unit, the area saving is significant. The proposed multi-mode resonator is implemented by two stubs allocate at symmetry places. The electric length is correlated to the operated frequency, which it decides the length of the stubs. The even-/odd-mode can be applied to analysis the resonance due to its symmetric structure. Moreover, to suppress the spurious passband, the SIR is applied to shift the harmonic resonance to the higher frequency. Finally, two kinds of dual-band bandpass filter constructed by the quad-mode resonator are proposed, which are designed for WLAN (2.4/5.2GHz). The measured insertion loss and BWR with 1.43 and 14.85% (@ 2.4 GHz), 1.34 dB and 12.95% (@ 5.2 GHz), the reflection loss between two passbands is about −20 dB. By applying two quarter-wavelength stubs, the reflection loss between two passbands gives −40 dB isolation improvement. The measured insertion loss and BWR with 0.82 and 17.37% (@ 2.4 GHz), 1.17 dB and 14.04% (@ 5.2 GHz).respectively.
摘要 i
ABSTRACT ii
致謝 iii
Figure Lists v
Table Lists vii
Chapter 1 Introduction 1
1.1 Microwave Spectrum 1
1.2 RF Circuit 2
1.3 The Basic Concept of the RF Filters 3
Chapter 2 Theorem 5
2.1 RF Filter and Resonator 5
2.2 Microstrip Line 5
2.2.1 Microstrip Structure 6
2.2.2 The Wave Propagation in the Microstrip 6
2.2.3 Effective Dielectric Constant and Characteristic Impedance 6
2.2.4 Guided Wavelength, Propagation Constant, Phase Velocity and Electrical Length 9
Chapter 3 Previous Researches 10
3.1 The Stub-Load Resonator 10
3.2 Stepped Impedance Resonator 16
Chapter 4 Design of a Dual-band Microstrip Filter Using Quad-mode Stub-loaded and Stepped Impedance Resonator 20
4.1 Introduction 20
4.2 The Proposed Design 21
4.2.1 Quad-Mode Stub-Loaded Resonator 21
4.2.2 Spurious Resonance Shift by SIR 24
4.3 Simulation and Measurement 27
4.4 Summary 30
Chapter 5 Conclusion 31
Future Work 32
Reference 33

[1]R. Ludwig and G. Bodanov, RF Circuit Design, 2nd edition, New Jersey: Pearson Education Inc., 2009.
[2]G. L. Matthaei, L. Young, and E. M. T. Jone, Microwave Filters, Impedance-Matching Networks and Coupling Structures, New York: McGraw Hill, 1964.
[3]翁敏航(2006)。射頻被動元件設計。台灣東華書局。
[4]D. M. Pozar, Microwave Engineering, 2nd edition, New York: Wiley, 1998.
[5]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd edition, New York: John Wiley and Sons, 2001.
[6]K. C. Gupta, R. Garg, I. Bahl and B. Bhartia, Microstrip Lines and Slotlines, 2nd edition, MA: Artech House, 1996.
[7]E. O. Hammerstad, "Equations for microstrip circuit design," in Microwave Conference, 1975. 5th European, 1975, pp. 268‒272.
[8]H. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet,” IEEE Trans., MTT-13, 1965, 172–185.
[9]E. Hammerstad and O. Jensen, "Accurate models for microstrip computer-aided design," in Microwave symposium Digest, 1980 IEEE MTT-S International, 1980, pp. 407‒409.
[10]Zeland Software Inc., IE3D, 1997.
[11]R. E. Collins, Foundations for Microwave Engineering, 2nd edition, New York: John Wiley and Sons, 2001.
[12]L. Zhu, S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," Microwave and Wireless Components Letters, IEEE, vol. 15, pp. 796‒798, 2005.
[13]H. Wang, Q. X. Chu, and J. Q. Gong, "A compact wideband microstrip filter using folded multiple-mode resonator," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 287‒289, 2009.
[14]Q. X. Chu, X. H. Wu, and X. K. Tian, "Novel UWB bandpass filter using stub-loaded multiple-mode resonator," Microwave and Wireless Components Letters, IEEE, vol. 21, pp. 403‒405, 2011.
[15]C. Chen, M. X. Yu, and J. Hou, "A novel compact UWB filter with multiple-mode resonator," in Computational Problem-Solving (ICCP), 2011 International Conference on, 2011, pp. 350‒352.
[16]J. R. Lee, J. H. Cho, and S. W. Yun, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," Microwave and Guided Wave Letters, IEEE, vol. 10, pp. 526‒527, 2000.
[17]L. Zhu and W. Menzel, "Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator," Microwave and Wireless Components Letters, IEEE, vol. 13, pp. 16‒18, 2003.
[18]S. B. Zhang and L. Zhu, "Compact and high-selectivity microstrip bandpass filters using triple-/quad-mode stub-loaded resonators," Microwave and Wireless Components Letters, IEEE, vol. 21, pp. 522‒524, 2011.
[19]S. J. Sun, T. Su, K. Deng, B. Wu, and C. H. Liang, "Compact microstrip dual-band bandpass filter using a novel stub-loaded quad-mode resonator," Microwave and Wireless Components Letters, IEEE, vol. 23, pp. 465‒467, 2013.
[20]M. J. Tsou, S. W. Chen, and W. H. Tu, "Compact wide-passband and wide-stopband microstrip bandpass filter using multi-stub resonator," in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, 2012, pp. 1‒3.
[21]C. Y. Hung, M. H. Weng, R. Y. Yang, and Y. K. Su, "Design of the compact parallel coupled wideband bandpass filter with very high selectivity and wide stopband," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 510‒512, 2007.
[22]R. Li and L. Zhu, "Compact UWB bandpass filter using stub-loaded multiple-mode resonator," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 40‒42, 2007.
[23]F. C. Chen, Q. X. Chu, Z. H. Li, and X. H. Wu, "Compact dual-band bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator," Microwaves, Antennas & Propagation, IET, vol. 6, pp. 1172‒1178, 2012.
[24]M. Makimoto and Y. Sadahiko, "Bandpass filters using parallel coupled stripline stepped impedance resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1413‒1417, 1980.
[25]M. H. Weng, H. W. Wu, and C. Y. Hung, “A compact pseudo-interdigital SIR bandpass filter with improved stopband performance,” Microwave and Optical Technology Letter, vol. 47, no. 5, pp. 462–464, Dec. 2005.
[26]M. H. Weng, H. W. Wu, and Y. K. Su, "Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 187‒189, 2007.
[27]C. F. Chen, T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 1945‒1952, 2006.
[28]H. W. Wu, K. Shu, R. Y. Yang, M. H. Weng, J. R. Chen, and Y. K. Su, "Design of a compact microstrip triplexer for multiband applications," in Microwave Conference, 2007. European, 2007, pp. 834‒837.
[29]Q. X. Chu and F. C. Chen, "A compact dual-band bandpass filter using meandering stepped impedance resonators," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 320‒322, 2008.
[30]W. Sen, S. X. W. Su, and W. Y. Yin, "A novel microstrip filter using three-mode stepped impedance resonator (TSIR)," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 774‒776, 2009.
[31]C. F. Chen, T. Y. Huang, and R. B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 3788‒3793, 2005.
[32]J. T. Kuo, T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 1331‒1337, 2005.
[33]H. W. Deng, Y. J. Zhao, W. Chen, B. Liu, and Y. Y. Liu, "Wide upper-stopband microstrip bandpass filter with dual-mode open loop stepped-impedance resonator and source-load coupling structure," Microwave and Optical Letters, vol. 54, pp. 1618‒1621, 2012.
[34]L. C. Tsai, "Compact microstrip dual-passband filters based on stepped-impedance resonators," Microwave and Optical Letters, vol. 55, pp. 1230‒1233, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔