跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖仁輝
研究生(外文):Ren-Huei Liao
論文名稱:以聚醚胺和異佛爾酮二胺溶劑之熱迴流法製備CZTSe薄膜太陽能電池之研究
論文名稱(外文):Fabrication of Quaternary CZTSe solar cells by Solvent-Thermal Refluxing Method with Polyetheramine and isophoronediamine as the Solvent
指導教授:許世昌許世昌引用關係
指導教授(外文):Shih-Chang Shei
口試委員:楊素華羅光耀賴韋志
口試委員(外文):Su-Hua YangKuang-Yao LoWei-Chih Lai
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:127
中文關鍵詞:聚醚胺太陽能電池
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究CZTSe薄膜太陽能電池吸收層,利用簡單低成本的溶劑熱回流法製備,合成溶劑為聚醚胺來比較與異佛爾酮二胺的結晶性及光學特性,在我們的研究顯示聚醚胺的CZTSe合成從二元相到完整四元相時間優於異佛爾酮二胺,發現聚醚胺的CZTSe能在短時間合成得到四元完整相,並且沒有發現任何的二元相存在,且透過XRD、Raman、EDS、TEM、UV證實晶體結構強度或是形成CZTSe奈米顆粒的速率及光學特性都優於異佛爾酮二胺。
隨後進行硒化熱處理,我們發現CZTSe奈米粒子在短時間合成3小時,混合不同中間相例如CuSe2、ZnSe和Zn,硒化熱處理獲得完整的CZTSe相並且晶粒大小約在1~2μm,我們退火在550度5分鐘內形成一個長晶均勻的薄膜,我們藉由對短時間合成的前驅層來達到一個完整的四元相,這樣能大幅的減少CZTSe製備的時間,也比較出不同前驅層時間的硒化條件證實3小時可以得到較佳的薄膜,XRD、Raman、EDS、SEM、UV和霍爾效應證實透過硒粉克數的改善能得到一個更大長晶均勻、結晶性更好的薄膜,顆粒大小約0.5um-4um,吸收層薄膜為銅窮錫富,霍爾電性測量為P-type的薄膜且有低阻抗及較佳的電子遷移率及載子濃度。
最後我們利用聚醚胺作為溶劑成功製備CZTSe 薄膜太陽能電池,利用較無毒的氧化鋅製備緩衝層,AZO透明導電層有良好的高穿透率及導電性完成CZTSe薄膜太陽能的電池效率為1.06%。

In this study, a non-vacuum process for Cu2ZnSnSe4 (CZTSe) thin film solar cells from nanoparticle precursors were described in this work. Quaternary kesterite-type Cu2ZnSnSe4 nanoparticles precursors were successfully synthesized by using a relatively simple and convenient elemental solvent-thermal reflux method. Polyetheramine and isophoronediamine as solvent compared to nanocrystal structure and direct band gap. Confirmed polyetheramine(D400) solvent capable of increase reaction rate to formed CZTSe nanoparticles compared with isophoronediamine (IPDA) solution. showed that the single phases CZTSe were successfully synthesized without any other secondary phase existed. XRD, Raman, EDS, TEM, and UV–vis reveal their structure showed that polyetheramine advanced nanocrystal structure and direct band gap compared with isophoronediamine solution.
Subsequently, selenization the CZTSe precursor films were prepared by rapid thermal annealing. A few minutes of annealing at 550℃ are sufficient to produce crystalline CZTSe films with grain sizes in the micrometer range. We found that CZTSe nanoparticles for short reaction time 3hr, the mixture of various intermediate phase such as CuSe2, ZnSe and Zn, selenization obtained pure CZTSe phase and CZTSe thin films grain sizes about 1μm-2μm. Selenization of the CZTSe 3hr precursor films at 550℃5min obtained single CZTSe phase. The CZTSe thin films improved by selenization of different Se powder, XRD, Raman, SEM, EDS, Hall effect and UV–vis reveal their structure showed that the CZTSe thin films were successfully selenization improved of quality films and nanocrystal structure, grain sizes about 0.5um-4um, absorber is Cu poor Zn rich, then low resistivity, carrier concentration of 1017cm-3 and high mobility.
Finally, we have successfully fabrication of CZTSe thin film solar cells by solvent-thermal refluxing method with polyetheramine as the solvent. Using a nontoxic ZnO as buffer layer, AZO window layer had better transmittance and high electric conductivity. The highest performing champion CZTSe solar cells show efficiencies of 1.06%.

Contents
摘要 i
Abstract ii
致謝 iv
Contents v
List of Figures vii
List of Tables x
Chapter 1. Introduction 1
1-1 Brief History of photovoltaic (PV) 1
1-2 Development of Solar cells 2
1-2-1 Amorphous Silicon Solar Cell 2
1-2-2 Cadmium Telluride Thin Film Solar Cell 2
1-2-3 Copper Indium Gallium Diselenide Solar Cell 3
1-2-4 Kesterite based and Thin film chalcogenide solar cells 3
1-2-5 Efficiency of different solar cells and development 4
1-3 Motivation 6
1-4 Contributions of thesis 7
1-5 Composition of thesis 7
Reference 8
Chapter 2. Literature review of solar cell and work 16
2-1 How solar cells work 16
2-1-1 Air mass and solar spectrum 17
2-1-2 Solar Cell I-V Characteristics 18
2-2 Literature review 20
2-2-1 Cu2ZnSnSe4 thin film by non-vacuum solution-based techniques 20
2-2-2 Selenization of CZTSe thin films and solar cells of buffer layer 21
2-3 Development of CZTSe thin film solar cells 24
2-4 Reported in the literature CZTSe solar cells 25
Reference 26
Chapter 3. Synthesis and characterization of CZTSe nanoinks using polyetheramine and isophorone diamine as solvent 34
3-1 Introduction 34
3-2 Experimental 35
3-3 Results and discussion 36
3-3-1 Synthesis of CZTSe nanoparticles using polyetheramine and isophorone diamine as solvent 36
3-3-2 Phase characterization and reaction mechanism 38
3-3-3 Morphology characterization and crystal transformation process 39
3-3-4 Optical properties of as synthesized CZTSe nanoparticles 40
3-3-5 Summary 42
Reference 43
Chapter 4. Morphological and structural characterization of CZTSe thin films grown by selenization of precursor flims 63
4-1 Introduction 63
4-2 Experimental 64
4-3 Results and discussion 65
4-3-1 Selenization of CZTSe thin films temperature at 500℃ for different time. 65
4-3-2 Selenization of CZTSe thin films temperature at 550℃ for different time. 66
4-3-3 Selenization at different temperature for 5min 68
4-3-4 Selenization of temperature at 550℃ 5min for different precursor time. 70
4-3-5 Selenization of temperature at 550℃ 5min for different Se powder. 72
4-3-6 Summary 75
Reference 76
Chapter 5. Fabrication and its characterization of CZTSe solar cells 106
5-1 Introduction 106
5-2 Experimental 108
5-2-1 Cleaning of glass substrate 108
5-2-2 Mo back contact electrode process of sputter 108
5-2-3 ZnO buffer layer process of SILAR 109
5-2-4 AZO window layer process of sputter 109
5-2-5 Al electrode process of sputter 109
5-2-6 lithography to CZTSe thin film 109
5-2-7 wet etching 110
5-2-8 Lift-off 110
5-3 Results and discussion 110
5-3-1 Summary 113
Reference 114
Chapter 6. Conclusions and Future work 126
6-1 Conclusions 126
6-2 Future work 127

[1]D. M. Chapin, C. S. Fuller and G. L. Pearson, ”A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol.25, pp. 676-677, 1954.
[2]Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB, “11% efficiency: characteris-tics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells,” Advanced Energy Materials 2012. DOI: 10.1002/ aenm.201200348.
[3]Repins I, Beall C, Vora N, De Hart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W-C, Goodrich A, Noufi R., “Co-evaporated Cu2ZnSnSe4 films and devices,” Solar Energy Materials and Solar Cells, vol. 101, pp.154-159, 2012.
[4]Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB,” Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Progress in Photovoltaics: Research and Applications, DOI: 10.1002/pip.1160, 2011.
[5]Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro T, ” Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique,” Applied Physics Express, pp.1:041201-1–041201-2, 2008.
[6]D. E. Carlson, C. R. Wronski," Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671, 1976.
[7]Perlin J, Space to Earth: The Story of Solar Electricity, aatec Publications, Ann Arbor (1999).
[8]Wronski C, Carlson D, in Archer M, Hill R, Eds, “Amorphous Silicon Solar Cells,” Clean Electricity from Photovoltaics, pp. 199-243, 2001.
[9]J. Yang, A. Banerjee and S. Guha, "Triple-Junction Amorphous Silicon Alloy Solar Cell with 14.6% Initial and 13.0% Stable Conversion Efficiencies," Applied Physics Letters, vol. 70, pp.2975, 1997.
[10]J. J. Loferski, "Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion," Journal of Applied Physics, vol. 27, pp.777-784, 1956.
[11]A. Rothwarf, K.W. Böer, "Direct Conversion of Solar Energy Through Photovoltaic Cells," Progress in Solid State Chemistry, vol. 10, pp. 71-102, 1975.
[12]B. E. McCandless and J. R. Sites, “Cadmium Telluride Solar Cells,” Solar Energy and Photovoltaics, ch.14, 2011.
[13]R. Frerichs, "The Photo-Conductivity of Incomplete Phosphors," Physical Review Letters, vol. 72, pp. 594-601, 1947.
[14]D. A. Jenny, R. H. Bube, "Semiconducting Cadmium Telluride," Physical Review Letters, vol. 96, pp. 1190-1191, 1954.
[15]Kr¨uger F, de Nobel D, J. Electron. 1, pp. 190-202, 1955.
[16]D de Nobel, Philips Res. Repts vol. 14, pp. 361–399 and pp. 430–492, 1959.
[17]S. Schorr, “Structural Aspects of Adamantine Like Multinary Chalcogenides,” Thin Solid Films, vol. 515, pp.5985-5991, 2007.
[18]K. lto, T. Nakazawa, "Electrical and Optical Properties of Stannie-Type Qua-ternary Semiconductor Thin Films," Japanese Journal of Applied Physics i, vol. 27, pp. 2094, 1988.
[19]H. Katagirl, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, “ Prepa-ration and evaluation of Cu2ZnSnS4 thin film by sulfurization of E –B evaporated precursors,” Solar Energy Materials and Solar cells, vol. 49, 407, 1997.
[20]M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “ Solar Cell Efficiency Tables (version 42)," Progress in Photovoltaics: Research and Applications, vol. 21, pp. 827, 2013.
[21]M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “ Solar Cell Efficiency Tables (version 43)," Progress in Photovoltaics: Research and Applications, vol. 22, pp. 1, 2014.
[22]T.Bazouni, What is the Fill Factor of a Solar Panel". Retrieved 17 February 2009.
[23]Vos, A. D, "Detailed balance limit of the efficiency of tandem solar cells". Journal of Physics D: Applied Physics 13 (5): 839, 1980.
[24]"French-German collaborators claim solar cell efficiency world record". EE Times Europe. 2 December 2014. Retrieved 3 December 2014.
[25]http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html.
[26]"Solar cell sets world record with a stabilized efficiency of 13.6%". Retrieved 2015.
[27]M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “ Solar Cell Efficiency Tables (version 37)," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 84-92, 2011.
[28]S. Y. Chen, X. G. Gong, A. Walsh and S. H. Wei, “Crystal and Electronic Band Structure of Cu2ZnSnX4 (X=S and Se) Photovoltaic Absorbers: First-Principles Insights,” Applied Physics Letters, vol. 94, 041903, 2009.
[29]H. Wei, W. Guo, Y. J. Sun, Z. Yang and Y. F. Zhang, “Hot-Injection Synthesis and Characterization of Quaternary Cu2ZnSnSe4 Nanocrystals,” Materials Letters, vol.64, pp. 1424-1426, 2010.
[30]M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and Rommel Noufi, “Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin Film Solar Cells,” Progress in Photovoltaics, vol. 7, pp. 311-316, 1999.
[31]P. Jackson, D. Hariskos, and E. Lotter, “New World Record Efficiency for Cu(In,Ga)Se2 Thin-Film Solar Cells Beyond 20%,” Progress in Photovoltaics, vol. 19, pp. 894-897, 2011.
[32]https://en.wikipedia.org/?title=Solar_cell.
[33]S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka and K. Matsubara, “CIGS Absorbers and Processes,” Progress in Photovoltaics, vol. 18, no. 6, pp. 453-466, 2010.
[34]A. Rao, S. Krishnan, G. Sanjeev, K. Siddappa, H. S. Ullal, and X. Z. Wu, “8 MeV Electron Irradiation Studies on Electrical Characteristics of Cu(In,Ga)Se2 Solar Cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 9, pp. 1618–1623, 2009.
[35]S. L. Gu, S. H. Hong, H. S. Shin, Y. W. Hong, D. H. Yeo, J. H. Kim and S. Nahm, “Phase Analysis of Cu(In1-xGax)Se2 Prepared by Solvothermal Method,” Ceramics International, vol. 38, pp.S521–S523, 2012.
[36]王宣凱「用鋅/銅錫硒雙層薄膜形成銅鋅錫硒薄膜的研究」,國立成功大學,碩士論文,民國98年
[1]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, New Jersey: Wiley-Interscience: John Wiley & Sons, third ed , 2007.
[2]Liang Shi and Quan Li, " Thickness tunable Cu2ZnSnSe4 nanosheets," CrystEngComm, vol.13, pp. 6507, 2011.
[3]W. L. Liu, M. Q. Wu, L. D. Yan, R. C. Zhou, S. X. Si, S. R. Zhang and Q. Y. Zhang, “Noninjection Synthesis and Characterization of Cu2ZnSnSe4 Nanocrystals in Triethanolamine Reaction Media,” Materials Letters, vol. 65, pp. 2554-2557, 2011.
[4]H. Wei, W. Guo, Y.J. Sun, Z. Yang, Y.F. Zhang, “Hot-Injection Synthesis and Characterization of Quaternary Cu2ZnSnSe4 Nanocrystals,” Materials Letters, vol. 64, pp. 1424-1426, 2010.
[5]M. H. Chiang, Y. S. Fu, T. F. Guo, H. L. Liu and W. T. Lin, “Effects of Zn Precursors on Solvothermal Synthesis of Cu2ZnSnSe4 Nanocrystals,” Materials Letters, vol. 83, pp. 192-194, 2012.
[6]Y. Cao, C. R. Wang and J. Q. Hu, "Solvothermal Synthesis and Characterization of Quaternary Cu2ZnSnSe4 Nanocrystals," Advanced Materials Research, vols. 347-353, pp. 848-851, 2012.
[7]T. Rath, W. Haas, A. Pein, R. Saf, E. Maier, B. Kunert, F. Hofer, R. Resel, and G. Trimmel, "Synthesis and Characterization of Copper Zinc Tin Chalcogenide Nanoparticles: Influence of Reactants on the Chemical Composition," Solar Energy Materials and Solar Cells, vol. 101, pp. 87-94, 2012.
[8]Yitao Deng, Guilin Chen, Bin Pan, JianMin Li, Guoshun Jiang, Weifeng Liu, Changfei Zhu, “Selenization of mixed metal oxides for dense and ZnSe-free Cu2ZnSnSe4 absorber films,” Journal of Alloys and Compounds, vol. 591, pp. 117-120, 2014.
[9]Nathaniel J. Carter, Caleb K. Miskin, Charles J. Hages and Rakesh Agrawal, “Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu–Zn–Sn–S nanocrystals,” Solar Energy Materials & Solar Cells, vol. 123, pp. 189-196, 2014.
[10]Rachmat Adhi Wibowo, Kyoo Ho Kim and Woon Hwa Jung, “Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders,” Journal of Physics and Chemistry of Solids, vol. 71, pp. 1702-1706, 2010.
[11]S. W. Hong, C. Kim, S. C. Park, I. Rhee, D. H. Kim and J. K. Kang, “Characteristics of Cu2ZnSnSe4 Film formed by Using Co-sputtered Precursors and Selenization,” Molecular Crystals and Liquid Crystals, vol. 565, pp. 147-152, 2012.
[12]J. J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff and C. Platzer-Björkman, "Rapid Annealing of Reactively Sputtered Precursors for Cu2ZnSnS4 Solar Cells, " Progress in Photovoltaics: Research and Applications, vol. 22, pp. 10-17, 2012.
[13]J. He, J. H. Tao, X. K. Meng, Y. C. Dong, K. Zhang, L. Sun, P. X. Yang and J. H. Chu, “Effect of Selenization Time on the Growth of Cu2ZnSnSe4 Thin Films Obtained from Rapid Thermal Processing of Stacked Metallic Layers,” Materials Letters, vol. 126, pp. 1-4, 2014.
[14]Y. Z. Zhang, C. Liao, K. Zong, H. Wang, J. B. Liu, T. Jiang, J. F. Han, G. Q. Liu, L. Cui, Q. Y. Ye, H. Yan and W. M. Lau, " Cu2ZnSnSe4 Thin Film Solar Cells Prepared by Rapid Thermal Annealing of Co-electroplated Cu–Zn–Sn Precursors," Solar Energy, vol. 94, pp. 1-7, 2013.
[15]Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin and J. Brugger, “Structural and Optical Properties of the Cu2ZnSnSe4 Thin Films Grown by Nano-Ink Coating and Selenization,” Journal of Materials Science: Materials in Electronics,vol. 24, pp. 529–535, 2013.
[16]M. I. Amal, K. H. Kim,” Optical Properties of Selenized Cu2ZnSnSe4 Films from a Cu-Zn-Sn Metallic Precursor,” Chalcogenide Letters, vol. 9, pp. 345-353, 2012.
[17]S. Y. Kim, J. H. Kim, “Effect of Selenization on Sprayed Cu2ZnSnSe4 Thin Film Solar Cell,” Thin Solid Films, vol.547, pp.178–180, 2013.
[18]D. H. Kuo, J. P. Hsu, "Development of the Cu2ZnSnSe4 Absorption Layer with “Passivated” Large Grains for a Thin-Film Solar Cell Device, "Journal of Crystal Growth, vol. 372, pp.34-38, 2013.
[19]G. L. Chen, W. F. Liu, G. S. Jiang, B. Pan, C. F. Zhu, "Effect of Compact Structure on the Phase Transition in the Oxides Derived Cu2ZnSnSe4 Thin Films, "Solar Energy, vol. 92, pp.172–175, 2013.
[20]Carolin M. Fella, Alexander R. Uhl, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari."Cu2ZnSnSe4 Absorbers Processed from Solution Deposited Metal Salt Precursors under Different Selenization Conditions," Physica Status Solidi (a), vol. 209, pp.1043-1048, 2012.
[21]P.Uday Bhaskar, G.Suresh Babu, Y. B. Kishore Kumar and V.Sundara Raja, “Growth and characterization of Cu2ZnSnSe4 thin films by a two-stage process,” Solar Energy Materials & Solar Cells, vol. 115, pp. 181–188, 2013.
[22]Byungha Shin, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, and Supratik Guha, “Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier,” APPLIED PHYSICS LETTERS, vol. 101, pp.053903, 2012.
[23]M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja and E. Mellikov, “Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy,” Thin Solid Films, vol. 519 pp. 7394–7398, 2011.
[24]Lian Guo, Yu Zhu1, Oki Gunawan, Tayfun Gokmen, " Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency," PHOTOVOLTAICS, vol. 22 ,pp. 58−68, 2014.
[25]R. Juskenas, S. Kanapeckaite, V. Karpaviciene, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis, G. Niaura, "A Two-Step Approach for Electrochemical Deposition of Cu–Zn–Sn and Se Precursors for CZTSe Solar Cells," Solar Energy Materials and Solar Cells, vol. 101, pp. 277-282, 2012.
[26]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, M. Krunks, T. Varema and E. Mellikov, "Cu2ZnSnSe4 Monograin Powders for Solar Cell Application," Photovoltaic energy conversion, vol. 1, pp.468-470, 2006.
[27]R. A. Wibowo, E. S. Lee, B. Munir and K.H. Kim, Physica Status Solidi (a) vol. 204 pp. 3373, 2007.
[28]R. A. Wibowo , W. S. Kim, E. S. Kee, B. Munir and K. H. Kim, "Single Step Preparation of Quaternary Cu2ZnSnSe4 Thin Films by RF Magnetron Sputtering from Binary Chalcogenide Targets "Journal of Physics and Chemistry of Solids, vol. 68, pp. 1908-1913, 2007.
[29]M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, M. Krunks, T. Varema and E. Mellikov, "Cu2ZnSnSe4 Monograin Powders for Solar Cell Application," Photovoltaic energy conversion, vol. 1, pp.468-470, 2006.
[30]G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M. Peter, "Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors," Progress in Photovoltaics: Research and Applications, vol. 17, pp.315-319, 2009.
[31]Santanu Bag, Oki Gunawan, Tayfun Gokmen, Yu Zhu, Teodor K. Todorova and David B. Mitzi, " Low Band Gap Liquid-Processed CZTSe Solar Cell with 10.1% Efficiency ", Energy and Environmental Science, vol. 5, pp. 7060-7065, 2012.
[32]王宣凱「用鋅/銅錫硒雙層薄膜形成銅鋅錫硒薄膜的研究」,國立成功大學,碩士論文,民國98年
[33]Shou-Yi Kuo, " Growth of CU2ZnSnSe4 Thin Films by Selenization of Magnetron Sputtered Precursors for Solar Cells," 38th IEEE Conference Publications, 2012.
[1]D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energ. Mat. Sol. C. 95, 1421–1436 (2011).
[2]S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, K. H. Yoon,“Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[3]O.Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov ,“ Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48-51 (2013).
[4]W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436-442 (2013).
[5]H. Wei , W. Guo, Y. Sun, Z. Yang, Y. Zhang ,“Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals ,” Mater. Lett. 64, 1424–1426 (2010).
[6]Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mat. Sci. Semicon. Proc. 15, 214–217 (2012).
[7]M. Cao, Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318, 1117–1120 (2011).
[8]M. Pal, N. R. Mathews, R. S. Gonzalez, X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[9]L. J. Chen, Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[10]S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5, 7060 (2012).
[11]M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[12]M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4 Thin Films by Spin-Coating and Selenization Process,” IEEE Nano 2011 Conference, 222-226 (2011).
[13]Y. Cao, M. S. Denny, J. Jonathan, V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles ,” J. Am. Chem. Soc. 134, 15644–15647 (2012).
[14]Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. El. 24, 529-535 (2013).
[15]H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li,Z. Sun, Z. Yang and S. M. Huang,“ Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19, 1250034 (2012).
[16]Liang Shi and Quan Li, " Thickness tunable Cu2ZnSnSe4 nanosheets," CrystEngComm, vol. 13, pp. 6507–6510 | 6507, 2011.
[17]P. M. P. Salomé, P. A. Fernandes and A. F. da Cunha, "Morphological and Structural Characterization of Cu2ZnSnSe4 Thin Films Grown by Selenization of Elemental Precursor Layers," Thin Solid Films, vol. 517, pp. 2531-2534, 2009.
[18]Wilman Septina,Shigeru Ikeda, Akio Kyoraiseki, Takashi Harada, Michio Matsumura, "Morphological and Structural Characterization of Cu2ZnSnSe4 Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure," Electrochimica Acta, vol. 88, pp. 436-442, 2013.
[19]M. Altdoja, K. Tosaar, J. Rauimmo, M. Danilson, M. Grossberg, J. Krustok and E. Mellikov, ”Cu2Zn1-xCdxSn(Se1-ySy)4 Solid Solutions as Absorber Materials for Solar Cells,” Physica Status Solidi A1, vol. 205, pp. 167-170, 2008.
[20]A. Redinger, K. Hones, X. Fontane, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Perez-Rodriguez, S. Siebentritt, ”Detection of a ZnSe Secondary Phase in Coevaporated Cu2ZnSnSe4 Thin Films,” Applied Physics Letters, vol. 98, pp. 01907-101907-3, 2011.
[21]H. Irving and R. J. P. Williams, "The Stability of Transition-Metal Complexes," Journal of the Chemical Society, pp. 3192-3210, 1953.
[22]H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, " Thermal Analysis and Synthesis from the Melts of Cu-Based Quaternary Compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se)" Journal of Crystal Growth, vol. 208, pp. 416-422, 2000.
[23]SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, and Jae Ho Yun, " Determination of band gap energy „Eg… of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values," APPLIED PHYSICS LETTERS 97, pp. 3192-3210, 1953.
[24]Priyal Jain, P. Aruna, " Influence of grain size on the band-gap of annealed SnS thin films," Thin Solid Films 548, pp. 241–246, 2013.
[25]P. Kumar and K. Singh, ”Wurtzite ZnSe Quantum Dots: Synthesis, Characterization and PL Properties” Journal of optoelectronic and Biomedical Materials, vol. 1, pp. 59-69, 2009.
[26]W. L. Liu, M. Q. Wu, L. D. Yan, R. C. Zhou, S. X. Si, S. R. Zhang, Q. Y. Zhang, “Noninjection Synthesis and Characterization of Cu2ZnSnSe4 Nanocrystals in Triethanolamine" Materials Letters, vol. 65, pp. 2554-2557, 2011.
[27]S. H. Jung, J. G., J. H. Yun, S. J. Ahn, D. Y. Nam, H. S. Cheong, S. K. Ahn, A. Cho, K. S. Shin and K. H. Yoon, “Cu2ZnSnSe4 Thin Film Solar Cells Based on a Single-Step Co-evaporation Process,” Thin Solid Films, vol. 535 pp. 52-56, 2013.
[28]Carolin M. Fella, Alexander R. Uhl, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari, " Cu2ZnSnSe4 Absorbers Processed from Solution Deposited Metal Salt Precursors under Different Selenization Conditions," Physica Status Solidi (a), vol. 209, pp.1043-1048, 2012.
[29]K. H. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. S. Shin, S. K. Ahn, S. H. Park, K. H. Yoon and S. J. Ahn,“ Role of Chelate Complexes in Densification of CuInSe2 (CIS) Thin Film Prepared from Amorphous Cu–In-Se Nanoparticle Precursors ,” Journal of Materials Chemistry, vol. 22, pp. 8444-8448, 2012.
[1]S. Susanne, S. Susan, “Kesterites—a challenging material for solar cells,” Prog. Photovoltatics, vol.20, no.5, pp.512–519, Aug. 2012.
[2]M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim, A.V. Moholkar, “CZTS based thin film solar cells: a status review,” Mater. Sci. Tech., 28 (1/2), pp.98-109, 2013.
[3]M. Patel, I. Mukhopadhyay, A. Ray, “Structural, optical and electrical properties of spray-deposited CZTS thin films under a nonequilibrium growth condition,” J. Phys. D: Appl. Phys., 45, 445103, 2012.
[4]L. A. Wahab, M. B. E. Den, A. A. Farrag, S. A. Fayek, K. H. Marzouk, “Electrical and optical properties of chalcopyrite compounds,” J. Phys. Chem. Solids, 70, pp.604–608, 2009.
[5]I. H. Mohammad, “Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges,” Chalcogenide Lett., 9, pp.231-242, 2012.
[6]J. Sunghun, G. Jihye, H. Y. Jae, J. A. Se, N. Dahyun, C. Hyeonsik, A. Seungkyu, C. Ara, S. S. Kee, H. Y. Kyung, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films, 535, 52-56, 2013.
[7]D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energy Mater. Sol. Cells, 95, 1421-1436, 2011.
[8]O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films, 535, 48-51, 2013.
[9]X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. C. Lux-Steiner, A. Ennaoui, “Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors,” Thin Solid Films, 535, 10-13, 2012.
[10]Y. Li, Q. Han, W. Shi, “The study of annealing process for CZTSSe under extra chalcogen vapor pressure,” Chalcogenide Lett., 11, 167-174, 2014.
[11]S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, Xiao Yanjun, S. S. Kolekar, J. H. Lee, J. H. Kim, H. Im, “Synthesis of Cu2ZnSnS4 (CZTS) absorber by rapid thermal processing (RTP) sulfurization of stacked metallic precursor films for solar cell applications,” Mater. Lett., 118, 76-79, 2014.
[12]R. A. Wibowo, W. H. Jung, K. H. Kim, “Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders Original Research Article,” J. Phys. Chem. Solids, 71, 1702-1706, 2010.
[13]P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, ”Growth and characterization of Cu2 ZnSnSe4 thin films by a two-stage process,” Sol. Energy Mater. Sol. Cells, 115, 181–188, 2013.
[14]G. Zoppi1, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Prog. Photovoltaics, 17, 315-319, 2009.
[15]R. A. Wibowo, W. H. Jung, M. H. A. Faruqi, I. Amal, K. H. Kim, “Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders,” Mater. Chem. Phys., 124, 1006-1010, 2010.
[16]J. Krustok, R. Josepson, M. Danilson, and D. Meissner, “Temperature dependence of Cu2ZnSn(SexSx-1)4 monograin solar cells,” Solar Energy, vol. 84, 2009, pp. 379.
[17]K. Moriya, K. Tanaka, and H. Uchiki, “Fabrication of Cu2ZnSnS4 thin film solar cell prepared by pulsed laser deposition,” Japanese Journal of Applied Physics, vol. 46, 2007, pp. 5780.
[18]A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Material Science and Engineering R Rep, vol. 40, 2003, pp. 1.
[19]J. Palm, V. Probst, and F. H. Karg, “Second generation CIS solar modules,” Solar Energy, vol. 77, 2004, pp. 757.
[20]S. N. Kundu, D. Bhattacharyya, S. Chaudhuri, and A. K. Pal,“Synthesis of CuInSe2 films by rapid thermal processing of stacked elemental layers,” Mater. Chem. Phys. vol. 57, 1999, pp. 207.
[21]R. Caballero, and C. Guillén, “CuInSe2 Formation by selenization of sequentially evaporated metallic layers,” Sol. Energy Mater. Sol. Cells, vol. 86, 2005, pp. 1.
[22]W. K. Kim, E. A. Payzant, T. J. Anderson, and O. D. Crisalle, “In situ investigation of the selenization kinetics of Cu-Ga precursor using time-resolved high temperature X-ray diffraction,” Thin Solid Films, vol. 515, 2005, pp. 5837.
[23]M. I. Amal, K. H. Kim,” Optical Properties of Selenized Cu2ZnSnSe4 Films from a Cu-Zn-Sn Metallic Precursor,” Chalcogenide Letters, vol. 9, pp. 345-353, 2012.
[24]Wilman Septina,Shigeru Ikeda, Akio Kyoraiseki, Takashi Harada, Michio Matsumura, "Morphological and Structural Characterization of Cu2ZnSnSe4 Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure," Electrochimica Acta, vol. 88, pp. 436-442, 2013.
[25]M. Altdoja, K. Tosaar, J. Rauimmo, M. Danilson, M. Grossberg, J. Krustok and E. Mellikov, ”Cu2Zn1-xCdxSn(Se1-ySy)4 Solid Solutions as Absorber Materials for Solar Cells,” Physica Status Solidi A1, vol. 205, pp. 167-170, 2008.
[26]P. Kumar and K. Singh, ”Wurtzite ZnSe Quantum Dots: Synthesis, Characterization and PL Properties” Journal of optoelectronic and Biomedical Materials, vol. 1, pp. 59-69, 2009.
[27]Carolin M. Fella, Alexander R. Uhl, Yaroslav E. Romanyuk, and Ayodhya N. Tiwari."Cu2ZnSnSe4 Absorbers Processed from Solution Deposited Metal Salt Precursors under Different Selenization Conditions," Physica Status Solidi (a), vol. 209, pp.1043-1048, 2012.
[28]T. Tanaka, T. Sueishi, K. Saito, Q. X. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, "Existence and Removal of Cu2Se Second Phase in Coevaporated Cu2ZnSnSe4 Thin Films," journal of applied physics, vol. 111, pp. 053522, 2012.
[29]H. Irving and R. J. P. Williams, "The Stability of Transition-Metal Complexes," Journal of the Chemical Society, pp. 3192-3210, 1953.
[30]Pay-Yu Lee, Sheng-Po chang, Shoou-Jinn chang, " Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation," Solar Energy Materials & Solar Cells , vol. 128, pp. 156-165, 2014.
[31]Yoonjung Hwang, Bo-In Park, Byung-Seok Lee, " Influences of Extended Selenization on Cu2ZnSnSe4 Solar Cells Prepared from Quaternary Nanocrystal Ink," The Journal of Physical Chemistry C , vol. 118, pp. 27657−27663, 2014.
[32]Moges Tsega and Dong-Hau Kuo, " Defects and Its Effects on Properties of Cu-Deficient Cu2ZnSnSe4 Bulks with Different Zn/Sn Ratios," Appl. Phys. Express , vol. 5, pp. 091201, 2012.
[33]T. Tanaka, T. Sueishi, K. Saito, Q. X. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, "Existence and Removal of Cu2Se Second Phase in Coevaporated Cu2ZnSnSe4 Thin Films," journal of applied physics, vol. 111, pp. 053522, 2012.
[34]A. Mousel, M. Djemour, R. Gutay, L. Valle, N. Siebentritt, " Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer," PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, pp. 22:51–57, 2014.
[35]G. L. Chen, W. F. Liu, G. S. Jiang, B. Pan, C. F. Zhu, "Effect of Compact Structure on the Phase Transition in the Oxides Derived Cu2ZnSnSe4 Thin Films, "Solar Energy, vol. 92, pp.172–175, 2013.
[1]S. Kurtz, J. Geisz,”Multijunction solar cells for conversion of concentrated sunlight to electricity” Opt. Express 18, A73-A78 (2010).
[2]N. Tansu, J. Y. Yeh, L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition,” J. Phys.-Condens. Mat. 16, S3277 (2004).
[3]N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” IEEE J. Sel. Top Quant. 9, 1220–1227 (2003).
[4]S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers,” IEEE J. Sel. Top Quant. 11, 1089–1098 (2005).
[5]M. Wiemer, V. Sabnis, H. Yuen, "43.5% efficient lattice matched solar cells," Proc. SPIE, 8108 (2011).
[6]M. Venkatachalam, M.D. Kannan, S. Jayakumar,R. Balasundaraprabhu, N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films 516, 6848 – 6852 (2008).
[7]V. S. Saji, I. H. Choi, C. W. Lee,“Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells,” Sol. Energy 85, 2666–2678 (2011).
[8]D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell,” Sol. Energ. Mat. Sol. C. 95, 1421–1436 (2011).
[9]S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, K. H. Yoon,“Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56 (2013).
[10]O.Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov ,“ Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route,” Thin Solid Films 535, 48-51 (2013).
[11]W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure,” Electrochim. Acta 88, 436-442 (2013).
[12]H. Wei , W. Guo, Y. Sun, Z. Yang, Y. Zhang ,“Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals ,” Mater. Lett. 64, 1424–1426 (2010).
[13]Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles,” Mat. Sci. Semicon. Proc. 15, 214–217 (2012).
[14]M. Cao, Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles,” J. Cryst. Growth 318, 1117–1120 (2011).
[15]M. Pal, N. R. Mathews, R. S. Gonzalez, X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method,” Thin Solid Films 535, 78–82 (2013).
[16]L. J. Chen, Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application,” Mater. Lett. 91, 372–375 (2013).
[17]S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency,” Environ. Eng. Sci. 5, 7060 (2012).
[18]M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films,” Thin Solid Films 544, 291–295 (2013).
[19]M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4 Thin Films by Spin-Coating and Selenization Process,” IEEE Nano 2011 Conference, 222-226 (2011).
[20]Y. Cao, M. S. Denny, J. Jonathan, V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles ,” J. Am. Chem. Soc. 134, 15644–15647 (2012).
[21]Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization,” J. Mater. Sci.-Mater. El. 24, 529-535 (2013).
[22]H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li,Z. Sun, Z. Yang and S. M. Huang,“ Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method,” Surf. Rev. Lett. 19, 1250034 (2012).
[23]W. Liu, B. Guo, C. Mak, A. Li, X. Wu, F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells ,” Thin Solid Films 535, 39–43 (2013).
[24]Song-rui Jane, " The effect of ZnO buffer layer on CIGS solar cell by Successive Ionic Layer Adsorption And Reaction," 國立臺南大學電機工程學系 碩士論文, 2012.
[25]A. Mousel, M. Djemour, R. Gutay, L. Valle, N. Siebentritt, " Influence of thickness and annealing temperature on the electrical,optical and structural properties of AZO thin films," Vacuum , vol. 89, pp. 127−131, 2013.
[26]Mikhail TIVANOV , Lev ASTASHENOK , Alexander FEDOTOV, " Effect of absorbing layer thickness on efficiency solar cells based on Cu(In,Ga)(S,Se)2," PRZEGLĄD ELEKTROTECHNICZNY ISSN, pp. 0033−2097, 2012.
[27]Lian Guo, Yu Zhu1, Oki Gunawan, Tayfun Gokmen, " Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency," PHOTOVOLTAICS, vol. 22 ,pp. 58−68, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top