[1]T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, (2012), “Crystalline-Si photovoltaic devices with ZnO nanowires,” Solar Energy Materials and Solar Cells, 98, 494-498.
[2]X. B. Li, S. Y. Ma, F. M. Li, Y. Chen, Q. Q. Zhang, X. H. Yang, C. Y. Wang and J. Zhu, (2013), “Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection,” Materials Letters, 100, 119-123.
[3]A. Bakin, A. Behrends, A. Waag, H. J. Lugauer, A. Laubsch and K. Streubel, (2010), “ZnO-GaN Hybrid Heterostructures as Potential Cost-Efficient LED Technology,” Proceedings of the IEEE, 98(7), 1281-1287.
[4]S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh and I. C. Chen, (2010), “A ZnO nanowire-based humidity sensor,” Superlattices and Microstructures, 47(6), 772-778.
[5]C. L. Hsu and Y. C. Tsai, (2012), “Field Emission of ZnO Nanowires in Low Vacuum Following Various Enhancements Made by Exposure to UV,” IEEE Transactions on Nanotechnology, 11(6), 1110-1116.
[6]Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu and Z. L. Wang, (2009), “Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators,” Journal of Materials Chemistry, 19(48), 9260-9264.
[7]W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, C. L. Hsu, (2009), “Laterally-grown ZnO-nanowire photodetectors on glass substrate,” Superlattices and Microstructures, 46(5), 797-802.
[8]Y. Zhou, L. Wang, Z. Ye, M. Zhao and J. Huang, (2014), “Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors,” Electrochimica Acta, 115, 277-282.
[9]Wikipedia. 2015. Zinc Oxide.
[10]S. R. Hejazi, H. R. M. Hosseini and M. S. Ghamsari, (2008), “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor−liquid−solid (VLS) mechanism,” Journal of Alloys and Compounds, 455(1-2), 353-357.
[11]Wikipedia. 2015. Vapor–liquid–solid method.
[12]B. Lewis, (1974), “The growth of crystals of low supersaturation: I. Theory,” Journal of Crystal Growth, 21(1), 29-39.
[13]D.R. Patil, L.A. Patil and D.P. Amalnerkar, (2007), “Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors,” Bulletin of Material Science, 30(6), 553-559.
[14]C.H. Chen, S.J. Chang, S.P. Chang, M.J. Li, I.C. Chen, T.J. Hsueh, A.D. Hsu and C.L. Hsu, (2010), “Fabrication of a White-Light-Emitting Diode by Doping Gallium into ZnO Nanowire on a p-GaN Substrate,” Journal of Physical Chemistry C, 114(29), 12422-12426.
[15]P. Ruankham, T. Sagawa, H. Sakaguchi and S. Yoshikawa, (2011), “Vertically aligned ZnO nanorods doped with lithium for polymer solar cells: defect related photovoltaic properties,” Journal of Materials Chemistry, 21(26), 9710-9715.
[16]C.L. Hsu and T.Y. Tsai, (2011), “Fabrication of Fully Transparent Indium-Doped ZnO Nanowire Field-Effect Transistors on ITO/Glass Substrates,” Journal of the Electrochemical Society, 158(2), K20-K23.
[17]O. Lupan, T. Pauporte, B. Viana and P. Aschehoug, (2011), “Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications,” Electrochimica Acta, 56(28), 10543-10549.
[18]K.P. Kim, D. Chang, S.K. Lim, S.K. Lee, H.K. Lyu and D.K. Hwang, (2011), “Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network,” Current Applied Physics, 11(6), 1311-1314.
[19]X.D. Li, Y.Q. Chang and Y. Long, (2012), “Influence of Sn doping on ZnO sensing properties for ethanol and acetone,” Materials Science and Engineering: C-Materials for Biological Applications, 32(4), 817-821.
[20]M.M. Rahman, S.B. Khan, A.M. Asiri, K.A. Alamry, A.A.P. Khan, A. Khan, M.A. Rub and N. Azum, (2013), “Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods,” Microchimica Acta, 180(7-8), 675-685.
[21]J.Q. He, J. Yin, D. Liu, L.X. Zhang, F.S. Cai and L.J. Bie, (2013), “Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO structure composed of nanorods,” Sensors and Actuators B: Chemical, 182, 170-175.
[22]C.L. Hsu, K.C. Chen and T.J. Hsueh, (2014), “UV Photodetector of a Homojunction Based On p-Type Sb-Doped ZnO Nanoparticles and n-Type ZnO Nanowires,” IEEE Transactions on Electron Devices, 61(5), 1347-1353.
[23]Y. Hou and A.H. Jayatissa, (2014), “Low resistive gallium doped nanocrystalline zinc oxide for gas sensor application via sol–gel process,” Sensors and Actuators B: Chemical, 204, 310-318.
[24]M. Amin, N.A. Shah, A.S. Bhatti and M.A. Malik, (2014), “Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts,” CrystEngComm, 16(27), 6080-6088.
[25]Y. H. Liu, S.J. Young, C. H. Hsiao, L.W. Ji, T. H. Meen, W. Water and S.J. Chang, (2014), “Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods,” IEEE Photonics Technology Letters, 26(7), 645-648.
[26]N. Sinha, G. Ray, S. Godara, M.K. Gupta and B. Kumar, (2014), “Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods,” Materials Research Bulletin, 59, 267-271.
[27]C.L. Hsu, Y.D. Gao, Y.S. Chen and T.J. Hsueh, (2014), “Vertical Ti doped ZnO nanorods based on ethanol gas sensor prepared on glass by furnace system with hotwire assistance,” Sensors and Actuators B: Chemical, 192, 550-557.
[28]K. Jindal, M. Tomar and V. Gupta, (2014), “Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor,” Biosensors and Bioelectronics, 55, 57-65.
[29]J.W. Zhao, C.S. Xie, L. Yang, S.P. Zhang, G.Z. Zhang and Z.M. Cai, (2015), “Enhanced gas sensing performance of Li-doped ZnO nanoparticle film by the synergistic effect of oxygen interstitials and oxygen vacancies,” Applied Surface Science, 330, 126-133.
[30]Z. Harith, N. Irawati, H.A. Rafaie, M. Batumalay, S.W. Harun, R.M. Nor and H. Ahmad, (2015), “Tapered plastic optical fiber coated with Al-doped ZnO nanostructures for detecting relative humidity,” IEEE Sensors Journal, 15(2), 845-849.
[31]X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li and Y.Z. Mao, (2015), “Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures,” Sensors and Actuators B: Chemical, 213, 222-233.
[32]Wikipedia. 2015. Piezoelectricity.
[33]蘇奕龍。2014。硫摻雜氧化鋅奈米線合成於軟性PET基板成長之壓電元件研究。碩士論文。國立臺南大學電機工程研究所。[34]陳冠超。2012。銻摻雜氧化鋅奈米線之合成與應用。碩士論文。國立臺南大學電機工程研究所。[35]L. Vayssieres, (2003), “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, 15(5), 464-466.
[36]X. D. Yan, Z. W. Li, R. Q. Chen and W. Gao, (2008) “Template Growth of ZnO Nanorods and Microrods with Controllable Densities,” Crystals Growth Design, 8(7), 2406-2410.
[37]J. Liu, L. L. Xu, B. Wei, W. Lv, H. Gao and Z. T. Zhang, (2010), “One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate,” Crystengcomm, 13(5), 1283-1286.
[38] S.N. Bai, H.H. Tsai and T.Y. Tseng, (2007), “Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method,” Thin Solid Films, 516(2-4), 155-158.
[39]D. Lin, H. Wu and Wei Pan, (2007), “Photoswitches and Memories Assembled by Electrospinning Aluminum-Doped Zinc Oxide Single Nanowires,” Advanced Materials, 19(22), 3968–3972.
[40]E. Burunkaya, N. Kiraz, O. Kesmez, H. E. C¸amurlu, M. Asilturk and E. Arpac¸, (2010), “Preparation of aluminum-doped zinc oxide (AZO) nano particles by hydrothermal synthesis,” Journal of Sol-Gel Science and Technology, 55(2), 171-176.
[41]T. H. Fang and S. H. Kang, (2010), “Physical Properties of ZnO:Al Nanorods for Piezoelectric Nanogenerator Application,” Current Nanoscience, 6(5), 505-511.
[42]B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar and A. C. Bose, (2011), “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sensors and Actuators B: Chemical, 156(1), 263-270.
[43]C. M. García, E.D. Valdés, A. M. P. Mercado, A. F. M. Sánchez, J. A. A. Adame, V. Subramaniam and J.R. Ibarra, (2012), “Synthesis of Aluminum-doped Zinc Oxide Nanowires Hydrothermally Grown on Plastic Substrate,” Advances in Materials Physics and Chemistry, 2, 56-59.
[44]S. Dhara and P.K. Giri, (2012), “Improved fast photoresponse from Al doped ZnO nanowires network decorated with Au nanoparticles,” Chemical Physics Letters, 541, 39-43.
[45]K. Chongsri and W. Pecharapa, (2014), “UV photodetector based on Al-doped ZnO nanocrystalline sol-gel derived thin fims,” Energy Procedia, 56, 554-559.
[46]A. Mohanta, J. G. S. Jr, H. O. Everitt, G. Shen, S. M. Kim and P. Kung, (2014), “Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition,” Journal of Luminescence, 146, 470-474.
[47]M. Hjiri, L. E. Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, (2014), “Al-doped ZnO for highly sensitive CO gas sensors,” Sensors and Actuators B: Chemical, 196, 413-420.
[48]C. L. Hsu, C. W. Su and T. J. Hsueh, (2014), “Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure,” RSC Advances, 4(6), 2980-2983.
[49]Z. Harith, N. Irawati, H. A. Rafaie, M. Batumalay, S. W. Harun, R. M. Nor and H. Ahmad, (2015), “Tapered Plastic Optical Fiber Coated With Al-Doped ZnO Nanostructures for Detecting Relative Humidity,” IEEE Sensors Journal, 15(2), 845-849.
[50]M. Raja, N. Muthukumarasamy, D. Velauthapillai, R. Balasundrapraphu, T. S. Senthil and S. Agilan, (2015), “Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode,” Superlattices and Microstructures, 80, 53-62.
[51]B. Yuliarto, L. Nulhakim, M. F. Ramadhani, M. Iqbal, Nugraha, Suyatman, and Ahmad Nuruddin, (2015), “Improved Performances of Ethanol Sensor Fabricated on Al-Doped ZnO Nanosheet Thin Films,” IEEE Sensors Journal, 15(7), 4114-4120.
[52]S.K. Lim, S. H. Hong, S. H. Hwang, W. M. Choi, S. H. Kim, H.W. Park and M. G. Jeong, (2015), “Synthesis of Al-doped ZnO Nanorods via Microemulsion Method and Their Application as a CO Gas Sensor,” Journal of Materials Science & Technology, 31(6), 639-644.
[53]W. Y. Chang, T. H. Fang and J. H. Tsai, (2015), “Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators,” Journal of Low Temperature Physics, 178(3-4), 174-187.
[54]國立成功大學微奈米中心. 2015. 儀器設備介紹. http://cmnst.ncku.edu.tw/files/11-1023-13238.php#11
[55]http://www.intechopen.com/books/scanning-electron-microscopy/catalyst-characterization-with-fesem-edx-by-the-example-of-the-epoxidation-of-1-3-butadiene-
[56]T. J. Hsueh, C. L. Hsu, S. J. Chang and I. C. Chen, (2007), “Laterally grown ZnO nanowire ethanol gas sensors,” Sensors and Actuators B: Chemical, 126(2), 473-477.
[57]高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。[58]S. Choopun, D. Wongratanaphisan and A. Gardchareon, (2012), “Ethanol Sensing Characteristics of Sensors Based on ZnO:Al Nanostructures Prepared by Thermal Oxidation,” 2012 IEEE Sensors, 1-4.
[59]B. Behera and S. Chandra, (2015), “A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film,” Journal of Micromechanics and Microengineering, 25(1), 015007-015015.
[60]W. Zang, W. Wang, D. Zhu, L. Xing and X. Xue, (2014), “Humidity-dependent piezoelectric output of Al–ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor,” RSC Advances, 4(99), 56211-56215.
[61]Wikipedia. 2015. Cyclic voltammetry.
[62]A. Liu, E. Liu, G. Yang, N. W. Khun and W. Ma, (2010), “Non-enzymatic glucose detection using nitrogen-doped diamond-like carbon electrodes modified with gold nanoclusters,” Pure and Applied Chemistry, 82(11), 2217–2229.
[63]S. Y. Lin, S. J. Chang and T. J. Hsueh, (2014), “ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose,” Applied Physics Letters, 104(19), 193704-193704-5.
[64]L. Q. Rong, C. Yang, Q. Y. Qian and X. H. Xia, (2007), “Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes,” Talanta, 72(2), 819-824.