跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許多喜
研究生(外文):Duo-Xi Hsu
論文名稱:鋁摻雜氧化鋅奈米線之合成及其應用
論文名稱(外文):Synthesis and application of Al doped ZnO nanowires
指導教授:許正良許正良引用關係
指導教授(外文):Cheng-Liang Hsu
口試委員:邱裕中許正良薛丁仁
口試委員(外文):Yu-Zung ChiouCheng-Liang HsuTing-Jen Hsueh
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:74
中文關鍵詞:鋁摻雜氧化鋅奈米線
外文關鍵詞:Al doped ZnO nanowires
相關次數:
  • 被引用被引用:3
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,鋁摻雜氧化鋅奈米線成功地透過水熱法合成並且分析,從SEM我們可以看到線長大約1.8 µm,而透過EDS分析可以得知,鋁摻雜的元素百分比為1.5%,在XRD與PL中,我們可以看到摻雜前後的峰值變化,而從TEM中,我們透過計算得到晶格常數為0.52 nm,且為單晶纖鋅礦結構。
之後我們量測了電性,製作了氣體感測器來探測不同酒精與丙酮濃度、濕度感測器偵測各種不同濕度下的電流改變、UV光檢測器在波長360 nm紫外光催化下的響應與奈米金/白金顆粒改良的生醫元件來量測不同濃度的葡萄糖濃度在氫氧化鈉中的響應,另外壓電元件成長於塑膠軟板上也在本文中被探討,在一般環境下與不同濕度環境下量測其輸出電壓及電流。
In this work, Al:ZnO nanowires were successfully synthesized on glass and PET substrates by hydrothermal method, and also analyzed by SEM, EDS, XRD, PL and TEM. The length of Al:ZnO is about 1.8 µm while the atomic doping concentration of Al is 1.5 %. In XRD and PL images, we can see the peak shifted, which were affected by Al doping. By TEM, 0.52 nm lattice spacing was observed, which shows structurally uniform single crystals with a wurtzite structure in our nanowires.
We measured the electrical properties, made the gas sensor for detecting different concentrations of alcohol and acetone, humidity sensor for measuring the response in different related humidity, photodetector for measuring the response under different wavelength of excitation light and used the 360 nm UV lamp to discuss the photoresponse. Nanoparticles modified electrode was fabricated for detecting different concentrations of glucose as biosensor. Finally, piezoelectric devices were fabricated which grown on PET substrate, measuring the output current and voltage at atmospheric environment and in different relate humidity.
中文摘要 I
Abstract II
致謝 III
Contents IV
Table contents VI
Figure Contents VII
Chapter 1 Introduction 1
1-1 Foreword 1
1-2 Structural development of the ZnO 2
1-3 Theoretical foundation and literature review 3
1-3.1 Synthesis methods of ZnO nanowires 3
1-3.1.1 Vapor-Liquid-Solid method 3
1-3.1.2 Vapor-Solid method 3
1-3.1.3 Hydrothermal method 3
1-3.2 Effect of the doped ZnO 4
1-3.3 Piezoelectric effect 6
1-3.4 Piezoelectric materials and operating mode 8
Chapter 2 Experimental details 11
2-1 Experimental flow chart 11
2-2 Hydrothermal growth 13
2-2.1 Hydrothermal method principle 13
2-2.2 Fabrication of ZnO nanowires by hydrothermal method 14
2-2.3 Fabrication of Al:ZnO nanowires by hydrothermal method 15
Chapter 3 Analysis instruments and measurement equipment profile 19
3-1 Analysis instruments 19
3-1.1 Field emission scanning electron microscopy (FE-SEM) 19
3-1.2 Energy dispersive spectroscopy (EDS) 20
3-1.3 X-ray diffraction (XRD) 21
3-1.4 Photoluminescence (PL) 21
3-1.5 High resolution transmission electron microscopy (HR-TEM) 23
3-2 Measuring equipment 24
3-2.1 Keithley 4200 24
3-2.2 Stanford SR 560 / Stanford SR 570 / National Instruments BNC-2120 24
3-2.3 Metrohm Autolab PGSTAT 101 26
Chapter 4 Analysis of the structures of the nanowires 27
4-1 SEM analysis of the nanowires 27
4-1.1 SEM analysis of the ZnO nanowires 27
4-1.2 SEM analysis of the Al:ZnO nanowires 28
4-2 EDS analysis of the Al:ZnO nanowires 29
4-3 XRD analysis of the Al:ZnO nanowires 31
4-4 PL analysis of the Al:ZnO nanowires 33
4-5 TEM analysis of the Al:ZnO nanowires 34
4-6 Hall analysis of the Al:ZnO nanowires 36
Chapter 5 Device fabrication and electrical measurement 37
5-1 Electrodes fabrication and measurement method 37
5-1.1 Electrodes fabrication 37
5-1.2 Gas sensor measurement method 39
5-1.3 Humidity sensor measurement method 40
5-1.4 Piezoelectric measurement method 40
5-1.5 Photodetector measurement method 41
5-1.6 Electrochemical measurement method 42
5-2 Measurement results and discussion 43
5-2.1 The Al:ZnO NWs I-V results and discussion 43
5-2.2 The Al:ZnO NWs gas sensor results and discussion 44
5-2.3 The Al:ZnO NWs humidity sensor results and discussion 49
5-2.4 The Al:ZnO NWs piezoelectric results and discussion 53
5-2.5 The Al:ZnO NWs piezoelectric in different humidity condition results and discussion 55
5-2.6 The Al:ZnO NWs photodetector results and discussion 57
5-2.7 The Al:ZnO NWs electrochemical results and discussion 59
5-2.7.1 NWs arrays electrode 61
5-2.7.2 Au nanoparticles modified NWs array electrode 62
5-2.7.3 Pt nanoparticles modified NWs array electrode 64
Chapter 6 Conclusion and future work 66
6-1 Conclusion 66
6-2 Future work 66
Reference 67
[1]T. J. Hsueh, S. Y. Lin, W. Y. Weng, C. L. Hsu, T. Y. Tsai, B. T. Dai and J. M. Shieh, (2012), “Crystalline-Si photovoltaic devices with ZnO nanowires,” Solar Energy Materials and Solar Cells, 98, 494-498.
[2]X. B. Li, S. Y. Ma, F. M. Li, Y. Chen, Q. Q. Zhang, X. H. Yang, C. Y. Wang and J. Zhu, (2013), “Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection,” Materials Letters, 100, 119-123.
[3]A. Bakin, A. Behrends, A. Waag, H. J. Lugauer, A. Laubsch and K. Streubel, (2010), “ZnO-GaN Hybrid Heterostructures as Potential Cost-Efficient LED Technology,” Proceedings of the IEEE, 98(7), 1281-1287.
[4]S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh and I. C. Chen, (2010), “A ZnO nanowire-based humidity sensor,” Superlattices and Microstructures, 47(6), 772-778.
[5]C. L. Hsu and Y. C. Tsai, (2012), “Field Emission of ZnO Nanowires in Low Vacuum Following Various Enhancements Made by Exposure to UV,” IEEE Transactions on Nanotechnology, 11(6), 1110-1116.
[6]Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu and Z. L. Wang, (2009), “Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators,” Journal of Materials Chemistry, 19(48), 9260-9264.
[7]W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, C. L. Hsu, (2009), “Laterally-grown ZnO-nanowire photodetectors on glass substrate,” Superlattices and Microstructures, 46(5), 797-802.
[8]Y. Zhou, L. Wang, Z. Ye, M. Zhao and J. Huang, (2014), “Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors,” Electrochimica Acta, 115, 277-282.
[9]Wikipedia. 2015. Zinc Oxide.
[10]S. R. Hejazi, H. R. M. Hosseini and M. S. Ghamsari, (2008), “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor−liquid−solid (VLS) mechanism,” Journal of Alloys and Compounds, 455(1-2), 353-357.
[11]Wikipedia. 2015. Vapor–liquid–solid method.
[12]B. Lewis, (1974), “The growth of crystals of low supersaturation: I. Theory,” Journal of Crystal Growth, 21(1), 29-39.
[13]D.R. Patil, L.A. Patil and D.P. Amalnerkar, (2007), “Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors,” Bulletin of Material Science, 30(6), 553-559.
[14]C.H. Chen, S.J. Chang, S.P. Chang, M.J. Li, I.C. Chen, T.J. Hsueh, A.D. Hsu and C.L. Hsu, (2010), “Fabrication of a White-Light-Emitting Diode by Doping Gallium into ZnO Nanowire on a p-GaN Substrate,” Journal of Physical Chemistry C, 114(29), 12422-12426.
[15]P. Ruankham, T. Sagawa, H. Sakaguchi and S. Yoshikawa, (2011), “Vertically aligned ZnO nanorods doped with lithium for polymer solar cells: defect related photovoltaic properties,” Journal of Materials Chemistry, 21(26), 9710-9715.
[16]C.L. Hsu and T.Y. Tsai, (2011), “Fabrication of Fully Transparent Indium-Doped ZnO Nanowire Field-Effect Transistors on ITO/Glass Substrates,” Journal of the Electrochemical Society, 158(2), K20-K23.
[17]O. Lupan, T. Pauporte, B. Viana and P. Aschehoug, (2011), “Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications,” Electrochimica Acta, 56(28), 10543-10549.
[18]K.P. Kim, D. Chang, S.K. Lim, S.K. Lee, H.K. Lyu and D.K. Hwang, (2011), “Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network,” Current Applied Physics, 11(6), 1311-1314.
[19]X.D. Li, Y.Q. Chang and Y. Long, (2012), “Influence of Sn doping on ZnO sensing properties for ethanol and acetone,” Materials Science and Engineering: C-Materials for Biological Applications, 32(4), 817-821.
[20]M.M. Rahman, S.B. Khan, A.M. Asiri, K.A. Alamry, A.A.P. Khan, A. Khan, M.A. Rub and N. Azum, (2013), “Acetone sensor based on solvothermally prepared ZnO doped with Co3O4 nanorods,” Microchimica Acta, 180(7-8), 675-685.
[21]J.Q. He, J. Yin, D. Liu, L.X. Zhang, F.S. Cai and L.J. Bie, (2013), “Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO structure composed of nanorods,” Sensors and Actuators B: Chemical, 182, 170-175.
[22]C.L. Hsu, K.C. Chen and T.J. Hsueh, (2014), “UV Photodetector of a Homojunction Based On p-Type Sb-Doped ZnO Nanoparticles and n-Type ZnO Nanowires,” IEEE Transactions on Electron Devices, 61(5), 1347-1353.
[23]Y. Hou and A.H. Jayatissa, (2014), “Low resistive gallium doped nanocrystalline zinc oxide for gas sensor application via sol–gel process,” Sensors and Actuators B: Chemical, 204, 310-318.
[24]M. Amin, N.A. Shah, A.S. Bhatti and M.A. Malik, (2014), “Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts,” CrystEngComm, 16(27), 6080-6088.
[25]Y. H. Liu, S.J. Young, C. H. Hsiao, L.W. Ji, T. H. Meen, W. Water and S.J. Chang, (2014), “Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods,” IEEE Photonics Technology Letters, 26(7), 645-648.
[26]N. Sinha, G. Ray, S. Godara, M.K. Gupta and B. Kumar, (2014), “Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods,” Materials Research Bulletin, 59, 267-271.
[27]C.L. Hsu, Y.D. Gao, Y.S. Chen and T.J. Hsueh, (2014), “Vertical Ti doped ZnO nanorods based on ethanol gas sensor prepared on glass by furnace system with hotwire assistance,” Sensors and Actuators B: Chemical, 192, 550-557.
[28]K. Jindal, M. Tomar and V. Gupta, (2014), “Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor,” Biosensors and Bioelectronics, 55, 57-65.
[29]J.W. Zhao, C.S. Xie, L. Yang, S.P. Zhang, G.Z. Zhang and Z.M. Cai, (2015), “Enhanced gas sensing performance of Li-doped ZnO nanoparticle film by the synergistic effect of oxygen interstitials and oxygen vacancies,” Applied Surface Science, 330, 126-133.
[30]Z. Harith, N. Irawati, H.A. Rafaie, M. Batumalay, S.W. Harun, R.M. Nor and H. Ahmad, (2015), “Tapered plastic optical fiber coated with Al-doped ZnO nanostructures for detecting relative humidity,” IEEE Sensors Journal, 15(2), 845-849.
[31]X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li and Y.Z. Mao, (2015), “Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures,” Sensors and Actuators B: Chemical, 213, 222-233.
[32]Wikipedia. 2015. Piezoelectricity.
[33]蘇奕龍。2014。硫摻雜氧化鋅奈米線合成於軟性PET基板成長之壓電元件研究。碩士論文。國立臺南大學電機工程研究所。
[34]陳冠超。2012。銻摻雜氧化鋅奈米線之合成與應用。碩士論文。國立臺南大學電機工程研究所。
[35]L. Vayssieres, (2003), “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Advanced Materials, 15(5), 464-466.
[36]X. D. Yan, Z. W. Li, R. Q. Chen and W. Gao, (2008) “Template Growth of ZnO Nanorods and Microrods with Controllable Densities,” Crystals Growth Design, 8(7), 2406-2410.
[37]J. Liu, L. L. Xu, B. Wei, W. Lv, H. Gao and Z. T. Zhang, (2010), “One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate,” Crystengcomm, 13(5), 1283-1286.
[38] S.N. Bai, H.H. Tsai and T.Y. Tseng, (2007), “Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method,” Thin Solid Films, 516(2-4), 155-158.
[39]D. Lin, H. Wu and Wei Pan, (2007), “Photoswitches and Memories Assembled by Electrospinning Aluminum-Doped Zinc Oxide Single Nanowires,” Advanced Materials, 19(22), 3968–3972.
[40]E. Burunkaya, N. Kiraz, O. Kesmez, H. E. C¸amurlu, M. Asilturk and E. Arpac¸, (2010), “Preparation of aluminum-doped zinc oxide (AZO) nano particles by hydrothermal synthesis,” Journal of Sol-Gel Science and Technology, 55(2), 171-176.
[41]T. H. Fang and S. H. Kang, (2010), “Physical Properties of ZnO:Al Nanorods for Piezoelectric Nanogenerator Application,” Current Nanoscience, 6(5), 505-511.
[42]B. Renganathan, D. Sastikumar, G. Gobi, N. R. Yogamalar and A. C. Bose, (2011), “Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides,” Sensors and Actuators B: Chemical, 156(1), 263-270.
[43]C. M. García, E.D. Valdés, A. M. P. Mercado, A. F. M. Sánchez, J. A. A. Adame, V. Subramaniam and J.R. Ibarra, (2012), “Synthesis of Aluminum-doped Zinc Oxide Nanowires Hydrothermally Grown on Plastic Substrate,” Advances in Materials Physics and Chemistry, 2, 56-59.
[44]S. Dhara and P.K. Giri, (2012), “Improved fast photoresponse from Al doped ZnO nanowires network decorated with Au nanoparticles,” Chemical Physics Letters, 541, 39-43.
[45]K. Chongsri and W. Pecharapa, (2014), “UV photodetector based on Al-doped ZnO nanocrystalline sol-gel derived thin fims,” Energy Procedia, 56, 554-559.
[46]A. Mohanta, J. G. S. Jr, H. O. Everitt, G. Shen, S. M. Kim and P. Kung, (2014), “Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition,” Journal of Luminescence, 146, 470-474.
[47]M. Hjiri, L. E. Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, (2014), “Al-doped ZnO for highly sensitive CO gas sensors,” Sensors and Actuators B: Chemical, 196, 413-420.
[48]C. L. Hsu, C. W. Su and T. J. Hsueh, (2014), “Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure,” RSC Advances, 4(6), 2980-2983.
[49]Z. Harith, N. Irawati, H. A. Rafaie, M. Batumalay, S. W. Harun, R. M. Nor and H. Ahmad, (2015), “Tapered Plastic Optical Fiber Coated With Al-Doped ZnO Nanostructures for Detecting Relative Humidity,” IEEE Sensors Journal, 15(2), 845-849.
[50]M. Raja, N. Muthukumarasamy, D. Velauthapillai, R. Balasundrapraphu, T. S. Senthil and S. Agilan, (2015), “Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode,” Superlattices and Microstructures, 80, 53-62.
[51]B. Yuliarto, L. Nulhakim, M. F. Ramadhani, M. Iqbal, Nugraha, Suyatman, and Ahmad Nuruddin, (2015), “Improved Performances of Ethanol Sensor Fabricated on Al-Doped ZnO Nanosheet Thin Films,” IEEE Sensors Journal, 15(7), 4114-4120.
[52]S.K. Lim, S. H. Hong, S. H. Hwang, W. M. Choi, S. H. Kim, H.W. Park and M. G. Jeong, (2015), “Synthesis of Al-doped ZnO Nanorods via Microemulsion Method and Their Application as a CO Gas Sensor,” Journal of Materials Science & Technology, 31(6), 639-644.
[53]W. Y. Chang, T. H. Fang and J. H. Tsai, (2015), “Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators,” Journal of Low Temperature Physics, 178(3-4), 174-187.
[54]國立成功大學微奈米中心. 2015. 儀器設備介紹. http://cmnst.ncku.edu.tw/files/11-1023-13238.php#11
[55]http://www.intechopen.com/books/scanning-electron-microscopy/catalyst-characterization-with-fesem-edx-by-the-example-of-the-epoxidation-of-1-3-butadiene-
[56]T. J. Hsueh, C. L. Hsu, S. J. Chang and I. C. Chen, (2007), “Laterally grown ZnO nanowire ethanol gas sensors,” Sensors and Actuators B: Chemical, 126(2), 473-477.
[57]高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。
[58]S. Choopun, D. Wongratanaphisan and A. Gardchareon, (2012), “Ethanol Sensing Characteristics of Sensors Based on ZnO:Al Nanostructures Prepared by Thermal Oxidation,” 2012 IEEE Sensors, 1-4.
[59]B. Behera and S. Chandra, (2015), “A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film,” Journal of Micromechanics and Microengineering, 25(1), 015007-015015.
[60]W. Zang, W. Wang, D. Zhu, L. Xing and X. Xue, (2014), “Humidity-dependent piezoelectric output of Al–ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor,” RSC Advances, 4(99), 56211-56215.
[61]Wikipedia. 2015. Cyclic voltammetry.
[62]A. Liu, E. Liu, G. Yang, N. W. Khun and W. Ma, (2010), “Non-enzymatic glucose detection using nitrogen-doped diamond-like carbon electrodes modified with gold nanoclusters,” Pure and Applied Chemistry, 82(11), 2217–2229.
[63]S. Y. Lin, S. J. Chang and T. J. Hsueh, (2014), “ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose,” Applied Physics Letters, 104(19), 193704-193704-5.
[64]L. Q. Rong, C. Yang, Q. Y. Qian and X. H. Xia, (2007), “Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes,” Talanta, 72(2), 819-824.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊