|
[1] Wolfgang Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys., 74(1331), 2002.
[2] Lev P. Pitaevskii Franco Dalfovo, Stefano Giorgini and Sandro Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(463), 1999.
[3] Wouter Montfrooij Alexander J.M. Schmets. Teaching superfluidity at the introductory level. arXiv, cond-mat(0804.3086), 2008.
[4] C.J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, 2nd edition, 2008. (Ch6-Ch10).
[5] Kirstine Berg-Sørensen and Klaus Mølmer. Bose-einstein condensates in spatially periodic potentials. Phys. Rev. A, 58(1480), 1998.
[6] Tilman Esslinger Theodor W. Hänsch Immanuel Bloch Markus Greiner, Olaf Mandel. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature(London), 415(39), 2002.
[7] L. Santos K. Góral and M. Lewenstein. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett., 88(170406), 2002.
[8] R Carretero-González, D J Frantzeskakis, and P G Kevrekidis. Nonlin-ear waves in bose–einstein condensates: physical relevance and mathe-matical techniques. Nonlinearty, 208(R139), 2008.
[9] L. Debnath. Nonlinear Partial Differential Equations. Springer, 3 edi-tion, 2012. Ch9.
[10] Sven Hensler Jürgen Stuhler Axel Griesmaier, Jörg Werner and Tilman Pfau. Bose-einstein condensation of chromium. Phys. Rev. Lett., 94(160401), 2005.
[11] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller. Strongly correlated gases of rydberg-dressed atoms: Quantum and clas-sical dynamics. Phys. Rev. Lett., 104(22302), 2010.
[12] C.-H. Hsueh, T.-C. Lin, T.-L. Horng, and W. C. Wu. Quantum crystals in a trapped rydberg-dressed bose-einstein condensate. Phys. Rev. A, 86(013619), 2012.
[13] Gordon W. F. Drake. Springer Handbook of Atomic, Molecular, and Optical Physics. Springer, 2nd edition, 2006. (Ch14).
[14] Vera Bendkowsky Björn Butscher Robert Löw Luis Santos Rolf Heide-mann, Ulrich Raitzsch and Tilman Pfau. Evidence for coherent collec-tive rydberg excitation in the strong blockade regime. Phys. Rev. Lett., 99(163601), 2007.
[15] T. G. Walker M. Saffman and K. Mølmer. Quantum information with rydberg atoms. Rev. Mod. Phys., 82(2313), 2010.
[16] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and M. Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5(110-114), 2009.
[17] A. J. Leggett. Can a solid be ”superfluid”? Phys. Rev. Lett., 25(1543), 1970.
[18] Nigel R. Cooper and Zoran Hadzibabic. Measuring the superfluid frac-tion of an ultracold atomic gas. Phys. Rev. Lett., 104(030401), 2010.
[19] L.P. Pitaevskii. Nonlinear Waves: Classical and Quantum Aspects. Springer Netherlands, 2005. p175-p192.
[20] C.H. Hsueh, Y.C. Tsai and W.C. Wu. Intrinsic-to-extrinsic supersolid transition and fractionally modulated states in a lattice ultracold bose gas with long-range interaction. Phys. Rev. A, 92(013634), 2015.
[21] T.F. Xu, X.M. Guo, X.L. Jing, W.C. Wu, and C.S. Liu. Gap solitons and bloch waves of interacting bosons in one-dimensional optical lat-tices: From the weak- to the strong-interaction limits. Phys. Rev. A, 83(043610), 2011.
[22] Mordechai Segev Zhigang Chen and Demetrios N Christodoulides. Opti-cal spatial solitons: historical overview and recent advances. Phys. Rev. A, 75(086401), 2012.
[23] Marek Trippenbach Michał Matuszewski, Wieslaw Królikowski and Yuri S. Kivshar. Simple and efficient generation of gap solitons in bose-einstein condensates. Rep. Prog. Phys., 73(063621), 2006.
[24] Pearl J. Y. Louis, Elena A. Ostrovskaya, Craig M. Savage, and Yuri S. Kivshar. Bose-einstein condensates in optical lattices: Band-gap struc-ture and solitons. Phys. Rev. A, 67(013602), 2003.
[25] T. Mayteevarunyoo and B. A. Malomed. Stability limits for gap soli-tons in a bose-einstein condensate trapped in a time-modulated optical lattice. Phys. Rev. A, 74(033616), 2006.
[26] Yongping Zhang and Biao Wu. Composition relation between gap soli-tons and bloch waves in nonlinear periodic systems. Phys. Rev. Lett., 102(093905), 2009.
[27] C. J. Pethick M. Machholm and H. Smith. Band structure, elementary excitations, and stability of a bose-einstein condensate in a periodic potential. Phys. Rev. A, 67(053613), 2003.
[28] L. D. Carr B. T. Seaman and M. J. Holland. Nonlinear band struc-ture in bose-einstein condensates: Nonlinear schrödinger equation with a kronig-penney potential. Phys. Rev. A, 71(033622), 2005.
[29] Andrey A. Sukhorukov and Yuri S. Kivshar. Nonlinear localized waves in a periodic medium. Phys. Rev. Lett., 87(083901), 2001.
[30] Oliver Morsch and Markus Oberthaler. Dynamics of bose-einstein con-densates in optical lattices. Rev. Mod. Phys., 78(179), 2006.
[31] J. J. Sakurai and Jim J. Napolitano. Modern Quantum Mechanics. Addison-Wesley, 2nd edition, 2010. (Ch4-2 and Problems 6).
[32] De Luo Boris A. Malomed Jason H. V. Nguyen, Paul Dyke and Ran-dall G. Hulet. Collisions of matter-wave solitons. Nature Physics, 10(918-922), 2014.
|