跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉芷妤
研究生(外文):Liu, Chih-Yu
論文名稱:未飽和層地下水水流數值模式之研究
論文名稱(外文):Study on Numerical Modeling of Groundwater Flow in Unsaturated Soil
指導教授:顧承宇顧承宇引用關係
指導教授(外文):Ku, Cheng-Yu
口試委員:洪鼎侃劉進賢許世孟陳俶季顧承宇
口試委員(外文):Hung, Tin-KanLiu, Chein-ShanHsu, Shih-mengChen, Shuh-GiKu, Cheng-Yu
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:115
中文關鍵詞:未飽和層地下水土壤水分特性曲線線性化理查方程式數值模式
外文關鍵詞:Unsaturated zoneGroundwater flowSWCCLinearized Richards equationNumerical model
相關次數:
  • 被引用被引用:6
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
未飽和層位於地表與地下水交換之界面,因降雨經地表入滲進而補注地下水時,水流傳輸過程必定先流經未飽和層,故地下水水流於未飽和層中的運動機制為相當重要之課題。
本研究以未飽和層地下水理論為依循基礎,探討土壤水分特性曲線模式以完整描述未飽和層土壤物理行為,並採Gardner提出之指數函數型態經驗公式,以簡化土壤非線性參數項進而線性化理查方程式,後續利用DJIFM建置未飽和層地下水水流數值模式。考量實際工程環境條件下,未飽和層土壤大多屬於非均質材料,本研究將模式應用於求解未飽和層互層土壤地下水水流問題,並針對高度非均質之未飽和層土壤材料進行探討,結果顯示,本研究所發展之模式能有效克服傳統數值方法所面臨數值收斂及運算效率之問題。
相較於前人之研究,本研究以土壤水分特性曲線作為主要思維,掌握線性化理查方程式之優勢,期望本研究所發展之數值模式提供後續應用於更複雜之未飽和層地下水水流問題。
Groundwater resources has been one of the most important water resources in Taiwan. Globally, the amount of water in the unsaturated zone located between the water table and the ground surface represents only a small portion of the total water. However, because the unsaturated zone forms the necessary transition between the atmosphere and large groundwater aquifers at depth, the movement of water within the unsaturated zone of hydrological cycle is significant and plays a critical role in the geotechnical engineering. In this study, the numerical solution of groundwater flow in unsaturated layered soil using the Richards equation is presented. All the studies showed that the unsaturated flow is a highly non-linear process due to the high nonlinearity of soil water characteristics and soil permeability and various boundary and initial conditions. To solve one-dimensional flow in the unsaturated zone of layered soil profiles, the flux conservation and continuity of pressure potential at the interface between two consecutive layers are considered in the numerical model. A linearization process based on the Gardner's exponential model for the nonlinear Richards equation to deal with groundwater flow in unsaturated layered soil is derived. In addition, a novel method, named the Dynamical Jacobian-Inverse Free Method (DJIFM), with the incorporation of a two-side equilibrium algorithm for solving ill-conditioned systems with extreme contrasts in the hydraulic conductivity is proposed. The validity of the model is established for a number of test problems by comparing numerical results with the analytical solutions. The results show that the proposed method can improve the convergence and can increase the numerical stability for solving groundwater flow in unsaturated layered soil with extreme contrasts in the hydraulic conductivity. It is expected that the proposed model can be used to apply for more sophisticated groundwater flow problems in unsaturated layered soil in the near future.
摘要 ............. I
Abstract ............. II
目次 ............. III
圖目次 ............. V
第一章 緒論 ............. 1
1.1 前言 ............. 1
1.2 研究動機與目的 ............. 1
1.3 研究內容 ............. 2
第二章 文獻回顧 ............. 5
2.1 未飽和層地下水水流問題 ............. 5
2.1.1 數值解 ............. 5
2.1.2 解析解 ............. 8
2.2 未飽和層互層土壤之研究 ............. 10
2.3 小結 ............. 10
第三章 未飽和層土壤地下水理論 ............. 11
3.1 未飽和層土壤物理特性 ............. 11
3.1.1 未飽和層土壤定義 ............. 11
3.1.2 未飽和層土壤吸力理論 ............. 14
3.2 土壤水分特性曲線 ............. 17
3.2.1 土壤水分特性曲線參數 ............. 19
3.2.2 特性說明 ............. 19
3.2.3 土壤水分特性曲線模式 ............. 22
3.3 未飽和層透水係數 ............. 34
第四章 未飽和層地下水水流數值模式之建立 ............. 37
4.1 控制方程式 ............. 37
4.1.1 廣義理查方程式 ............. 37
4.1.2 線性化理查方程式 ............. 42
4.2 解析解 ............. 47
4.3 有限差分理論 ............. 50
4.4 數值方法 ............. 54
4.4.1 The Dynamical Jacobian-Inverse Free Method ............. 54
4.4.2 Two-sided equilibrium algorithm ............. 59
第五章 數值案例與參數敏感度分析 ............. 61
5.1.1 未飽和層地下水水流問題 ............. 61
5.1.2 未飽和層土壤入滲分析模式之比較 ............. 68
5.2 應用案例 ............. 79
5.2.1 未飽和層土壤材料之探討 ............. 79
5.2.2 未飽和層互層土壤地下水水流問題 ............. 82
5.3 參數敏感度分析 ............. 99
5.3.1 飽和透水係數 ............. 101
5.3.2 飽和含水量 ............. 103
5.3.3 殘餘含水量 ............. 105
5.3.4 土壤孔隙分布參數 ............. 107
第六章 結論與建議 ............. 109
6.1 結論 ............. 109
6.2 建議 ............. 110
參考文獻 ............. 111

1. Aylor, D. E. and Parlange, J. Y., Vertical infiltration into a layered soil, Soil Science Society of America Journal, vol. 37, pp. 673-676, 1973.
2. Allen, M. B. and Murphy, C. L., A finite element collocation method for variably saturated flow in two space dimensions, Water Resour. Res., 22, 1537-1542, 1986.
3. Brutsaert, W. F., A functional iteration technique for solving the Richards equation applied to two dimensional infiltration problems, Water Resour. Res., 7, 1583-1596., 1971.
4. Bear, J., Hydraulics of Groundwater, McGraw-Hill, Inc, 1979.
5. Baum, R.L., Savage, W.Z. and Godt, J.W., TRIGRS— A FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, U.S. Geological Survey Open-File Report 02-0424, 2002.
6. Celia, M. A., Ahuja, L. R., and Pinder, G. F., Orthogonal Collocation and Alternating- direction Procedures for Unsaturated Flow Problems, Adv. Water Resources, Vol.10, 178-187, 1987.
7. Celia, M. A., Bouloutas, E. T., and Zarba, R. L., A General Mass-Conservation Numerical Solution for the Unsaturated Flow Equation, Water Resour. Res., 26, No. 7, 1483-1496, 1990.
8. Clayton, W. S., Relative permeability-saturation-capillary head relationships for air sparging in soils, Ph.D. Disseration, Colorado School of Mines, Golden, CO, 1996.
9. Corradini, C., Melone, F., and Smith, R. E., Modeling local infiltration for a two-layered soil under complex rainfall patterns, J. Hydrol., 237, 58–73, 2000.
10. Das, Braja M, Principles of Geotechnical Engineering, 7th Edition, Cengage Learning, 2010.
11. Fok, Y. S., One-dimensional infiltration into layered soils, Journal of the Irrigation and Drainage Division, vol. 96, pp. 121-129, 1970.
12. Fredlund, D. G., and Morgenstern, Stress state variables for unsaturated soils, Journal of the Geotechnical Engineering Division, ASCE, 103, pp.447-466, 1977.
13. Fredlund, D. G., Xing, A., and Huang, S, Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, vol. 31, pp. 533-546, 1994.
14. Green, W. H., and Ampt, G. A, Studies on soil physics I. The flow of air and water through soils. J. Agric. Sci., 4, 1–24, 1911.
15. Gardner, W. R., Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table, Soil science, vol.85, no4, pp.228-232, 1958.
16. Hanks, R. and Bowers, S., Numerical solution of the moisture flow equation for infiltration into layered soils, Soil Science Society of America Journal, vol. 26, pp. 530-534, 1962.
17. Hung, T. C., Hung, T.K. and Bugliarello G., Blood Flow in Capillary Tubes: Curvature and Gravity Effects, Biorheology, Vol. 17, pp. 331-342, 1980.
18. Hachum, A. Y., and Alfaro, J. F., Rain infiltration into layered soils: Prediction, J. Irrig. Drain. Div., 106(4), 311–319, 1980.
19. Huyakorn, P. S. and Pinder, G. F., Computational Methods in Subsurface Flow, Academic Press, Orlando, FL., 1983.
20. Hills, R. G., Porro, I., Hudson, D. B. and Wierenga, P. J., Modeling one-dimensional infiltration into very dry soils 1. Model development and evaluation, Water Resour. Res., 25, 1259-1269, 1989.
21. Holzbecher, E., Environmental modeling: using MATLAB: Springer, 2012.
22. Iverson, Richard M, Landslide triggering by rain infiltration, Water Resources Research, vol.36, pp.1897-1910, 2000.
23. Krahn. J and Frendlund, D.G., On total matric and osmotic suction, Journal of Soil Science, Vol. 114, No. 5, pp. 339-348, 1972.
24. Ku, C. Y., Yeih, W. C., Liu, C. S., Chi, C. C., Applications of the Fictitious Time Integration Method Using a New Time-Like Function, CMES: Computer Modeling in Engineering &; Sciences, Vol. 43, No. 2., 2009.
25. Ku, C. Y., Yeih, W. C., Liu, C. S., Solving Non-Linear Algebraic Equations by a Scalar Newton-homotopy Continuation Method, International Journal of Nonlinear Sciences and Numerical Simulation, 11(6), pp. 435-450, 2010.
26. Ku, C. Y., Yeih, W. C., Liu, C. S., Dynamical Newton-Like Methods for Solving Ill- Conditioned Systems of Nonlinear Equations with Applications to Boundary Value Problems. CMES: Computer Modeling in Engineering &; Sciences, vol. 76, no. 2, pp. 83-108, 2011.
27. Leconte, R., and Brissette, F. P., Soil moisture profile model for two-layered soil based on sharp wetting front approach. J. Hydrologic Eng., 62, 141–149, 2001.
28. Lu, N. and Likos, W. J., Unsaturated soil mechanics, John Wiley and Sons, 2004.
29. Liu, C. S., A fictitious time integration method for two-dimensional quasilinear elliptic boundary value problems, CMES: Computer Modeling in Engineering &; Sciences, vol. 33, pp. 179-198, 2008.
30. Liu, C. S., Chang, C. W., Novel Methods for Ill-Conditioned Linear Equations, Journal of Marine Science and Technology, vol. 17, no. 3, pp. 216-227, 2009.
31. Liu, C. S., A Two-Side Equilibration Method to Reduce the Condition Number of an Ill-Posed Linear System. CMES: Computer Modeling in Engineering &; Sciences, vol. 91, pp. 17-42, 2013b.
32. Mualem, Yechezkel, A catalogue of the hydraulic properties of unsaturated soils, Research Project no. 442, 1976.
33. Milly, P, C. D., A mass-conservative procedure for time-stepping in models of unsaturated flow, Adv. Water Resour., 8, 32-36, 1985.
34. Moldrup, P., Rolston, D. E., and Hansen, L. A, Rapid and numerically stable simulation of one dimensional, transient water flow in unsaturated, layered soils, Soil Sci., 148 3, 219–226, 1989.
35. Moldrup, P., Rolston, D. E., and Hansen, L. A., Rapid and numerically stable simulation of one dimensional transient water flow in unsaturated, layered soils, Soil Sci., 1483, 219–226, 1989.
36. Philip, J. R., Theory of infiltration, Adv. Hydrosci., 5, 215-296, 1969.
37. Pan, L. and Wierenga, P. J., A transformed pressure head-based approach to solve Richards’ equation for variably saturated soils, Water Resour. Res., 31, 925-931, 1995.
38. Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian, P., Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge. UK, 2007.
39. Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, vol. 1, pp. 318-333, 1931.
40. Ross, P. J., Efficient numerical methods for infiltration using Richards equation, Water Resour. Res., 26, 279-290, 1990.
41. Ray, C. and Mohanty, B. P., Some numerical investigations of the Richards equation, ASAE Paper 92-2586, St. Joseph, MI., 1992.
42. Rathfelder, K. and Abriola, L. M., Mass conservative numerical solutions of the head-based Richards equation, Water Resour. Res., 30, 2579-2586, 1994.
43. Romano, N., Brunoneb, B., and Santini, A., Numerical analysis of one-dimensional unsaturated flow in layered soils.” Adv. Water Resource, 21, 315–324, 1998.
44. Stauffer, F., and Dracos, T, Experimental and numerical study of water and solute infiltration in layered porous media, J. Hydrol., 84, 9–34, 1986.
45. Samani, Z., Cheraghi, A., and Willardson, L.,Water movement in horizontally layered soils, J. Irrig. Drain. Eng., 115(3), 449–456, 1989.
46. Serrano, S. E., Modeling infiltration in hysteretic soils, Adv. Water Resour., 13(1), 12–23, 1990.
47. Skeel, R. D. and Berzins, M., A Method for the Spatial Discretization of Parabolic Equations in One Space Variable, SIAM Journal on Scientific and Statistical Computing, Vol. 11, pp. 1-32, 1990.
48. Srivastava, R., and Yeh, J. T. C., Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils, Water Resour. Res., 27, 753–762, 1991.
49. Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N., Mathematical attributes of some soil—water characteristic curve models, in Unsaturated Soil Concepts and Their Application in Geotechnical Practice, ed: Springer, pp. 243-283, 2001.
50. Tagaki, S., Analysis of the vertical downward flow of water through a two-layer soil, Soil Sci., 90, 98-103, 1960.
51. Todsen, Marius, On the solution of transient free-surface flow problems in porous media by finite-difference methods, Journal of Hydrology, Vol. 12, pp 177-210., 1971.
52. Trompert, R., Local-uniform grid refinement and transport in heterogeneous porous media, Adv. in Water Resour., 16, 293-304, 1993.
53. Tracy, F. T., Analytical and Numerical Solutions of Richards' Equation with Discussions on Relative Hydraulic Conductivity, Hydraulic Conductivity-Issues, Determination and Applications, 2011.
54. van Genuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, vol. 44, pp. 892-898, 1980.
55. Vanapalli, S. K., Fredlund, D. G., and Pufahl, D. E., The influence of soil structure and stress history on the soil-water characteristic of a compacted till,”Geotechnique, 49(2), 143-159., 1999.
56. Whisler, F. D., and Klute, A., Analysis of infiltration into stratified soil columns, Proc., IAHS Symposium on Water in the Unsaturated Flow, Wageningen, The Netherlands, 451–470, 1966.
57. Warrick, A, Soil Water Dynamics, Oxford University Press, New York, 2003.
58. Yeh, G. T., Chang, J., Short, T. E., An exact peak capturing and oscillation-free scheme to solve advection-dispersion transport equations, Water Resour. Res., 28, 2937-2951, 1992.
59. Yang, H., Rahardjo, H. and Leong, E.-C., Behavior of unsaturated layered soil columns during infiltration, Journal of Hydrologic Engineering, vol. 11, pp. 329-337, 2006.
60. Zaslavsky, D, Theory of unsaturated flow into a non-uniform soil profile, Soil Science, vol. 97, pp. 400-410, 1964.
61. Zaradny, H, Groundwater flow in saturated and unsaturated soi, A.A. Balkema, P.O. Box 1675, 3000 BR Rotterdam, Netherlands, 1993.
62. 褚淑慧,改善未飽和層水流傳輸模式質量守恆與數值擴散問題之研究,國立交通大學土木工程學研究所碩士論文,2002。
63. 楊岳達,未飽和層一維入滲解析之研究,國立成功大學資源工程學系碩士論文,2003。
64. 陳俶季,蔡瑞興,李瑞琳,台灣地區岩石變形模數初步研究,興大工程學刊,第十四卷,第三期,pp.223-243,2003。
65. 李文生,變飽和地下水流數值模式之研究,國立臺灣大學土木工程研究所博士論文,2005。
66. 詹偉倫,互層未飽和土壤邊坡降雨入滲之數值分析,中原大學土木工程學系碩士論文,2006。
67. 許世孟、顧承宇、鍾明劍、蘇泰維、李錦發,岩盤工址之水力特性調查與案例應用,地工技術,第115期,第35-44頁,2008。
68. 陳家豪,非飽和紅土K0壓密行為之研究,國立臺北科技大學土木與防災研究所碩士論文,2009。
69. 顧承宇、黃智昭、林燕初、許世孟、柯建仲,臺灣中部山區水文地質特性研究-以斗六丘陵為例,環境工程會刊第28期,第15~31頁,2012。
70. 邱泯淇,降雨引致廣域淺層山崩未飽和層數值模式之研究,國立臺灣海洋大學河海工程學系碩士論文,2013。
71. 中興工程顧問社,臺灣南段山區地下水位觀測與水力特性調查(1/4)成果報告,經濟部中央地質調查所,2013。
72. 顧承宇、邱泯淇、劉芷妤,降雨入滲對未飽和層邊坡穩定影響之研究,第一屆不飽和土壤力學與工程應用研討會論文集,2014。
73. 劉芷妤、顧承宇、黃智昭、林燕初、許世孟、柯建仲,臺灣東部山區重要水文地質特性之研究,第八屆地下水資源及水質保護研討會論文集,2014。
74. 劉芷妤、顧承宇,線性化理查方程式應用於未飽和層地下水流模式之研究,第十六屆大地工程學術研究討論會論文集,2015。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top