J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed. Springer-Verlag, New York, 1996.
X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao and I. Yamazaki, SuperLU Users’ Guide, 2011.
C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, New York, 1997.
丁婉玉(2014),以廣義有限差分法求解二維奈維爾—史托克斯方程式及強制熱對流問題,國立臺灣海洋大學河海工程學系碩士學位論文。A. L. F. Lima E Silva, A. Silveira-Neto and J. J. R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, vol. 189, pp. 351-370, 2003.
E. Erturk, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers and Fluids, vol. 37, pp. 633-655, 2008.
D. Kim and H. Choi, A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids, Journal of Computational Physics, vol. 162, pp. 411-428, 2000.
G. X. Wu and Z. Z. Hu, Numerical simulation of viscous flow around unrestrained cylinders, Journal of Fluids and Structures, vol. 22, pp. 371-390, 2006.
C. H. Liu and D. Y. C. Leung, Development of a finite element solution for the unsteady Navier–Stokes equations using projection method and fractional-θ-scheme, Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 4301-4317, 2001.
A. Masud and R. A. Khurram, A multiscale finite element method for the incompressible Navier–Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol. 195 pp.1750-1777, 2006.
B. Klein, F. Kummer and M. Oberlack, A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, Journal of Computational Physics, vol. 237, pp. 235-250, 2013.
M. Ramšak, L. Škerget, M. Hriberšek and Z. Žunič, A multidomain boundary element method for unsteady laminar flow using stream function-vorticity equations, Engineering Analysis with Boundary Elements, vol. 29, pp.1-14, 2005.
K. Kovářík, J. Mužík and D. Sitányiová, A fractional step local boundary integral element method for unsteady two-dimensional incompressible flow, Engineering Analysis with Boundary Elements, vol. 44, pp. 55-63, 2014.
H. Ding, C. Shu, K.S. Yeo and D. Xu, Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method, Computer Methods in Applied Mechanics and Engineering, vol. 193, pp. 727-744, 2004.
Y. Kim, D. W. Kim, S. Jun and J. H. Lee, Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, vol. 196, pp. 3095-3109, 2007.
M. Lashckarbolok and E. Jabbari, Collocated discrete least squares (CDLS) meshless method for the streamfunction-vorticity formulation of 2D incompressible Navier-Stokes equations, Scientia Iranica A, vol. 19(6), pp. 1422-1430, 2012.
C. A. Bustamante, H. Powe and W. F. Florez, A global meshless collocation particular solution method for solving the two-dimensional Navier-Stokes system of equations, Computers and Mathematics with Applications vol. 65, pp. 1939-1955, 2013.
楊啟宏(2014),以局部化徑向基底函數配點法求解二維柏格斯方程式、速度—渦度方程式及自然熱對流問題,國立臺灣海洋大學河海工程學系碩士學位論文。H. Fasel, Investigation of the stability of boundary layers by a finite-difference model of the Navier-Stokes equations, Journal of Fluid Mechanics, vol. 78, pp. 355-383, 1976.
S. C. R. Dennis and J. D. Hudson, Methods of solution of the velocity-vorticity formulation of the Navier-Stokes equations, Journal of Computational Physics, vol. 122, pp. 300-306, 1995.
W. E and J. G. Liu, Vorticity boundary condition and related issues for finite difference schemes, Journal of Computational Physics, vol. 124, pp. 368-382, 1996.
W. E and J. G. Liu, Finite difference methods for 3D viscous incompressible flows in the vorticity-vector potential formulation on nonstaggered grids, Journal of Computational Physics, vol. 138, pp. 57-82, 1997.
H. L. Meitz and H. F. Fasel, A compact-difference scheme for the Navier-Stokes equations in vorticity-velocity formulation, Journal of Computational Physics, vol. 157, pp. 371-403, 2000.
G. Guevremont, W. G. Habashi and M. M. Hafez, Finite element solution of the Navier-Stokes equations by a velocity-vorticity method, International Journal for Numerical Methods in Fluids, vol. 10, pp. 461-475, 1990.
G. Guevremont, W. G. Habashi, P. L. Kotiuga and M. M. Hafez, Finite element solution of the 3D compressible Navier-Stokes equations by a velocity-vorticity method, Journal of Computational Physics, vol. 107, pp. 176-187, 1993.
D. C. Lo and D. L. Young, Two-dimensional incompressible flows by velocity-vorticity formulation and finite element method, Chinese Journal of Mechanical Engineering, vol. 17, pp. 13-20, 2001.
D. C. Lo and D. L. Young, Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow using a velocity-vorticity formulation, Journal of Computational Physics, vol. 195, pp. 175-201, 2004.
G. C. Bourantas, E. D. Skouras, V. C. Loukopoulos and G. C. Nikiforidis, Meshfree point collocation schemes for 2D steady state incompressible Navier-Stokes equations in velocity-vorticity formulation for high values of Reynolds number, Computer Modeling in Engineering and Sciences, vol. 59, pp. 31-63, 2010.
C. A. Wang, H. Sadat and C. Prax, A new meshless approach for three dimensional fluid flow and related heat transfer problems, Computers &;Fluids, vol. 69, pp. 136-146, 2012.
A. Bogomolny, Fundamental solutions method for elliptic boundary-value problems, SIAM Journal on Numerical Analysis, vol. 22, no. 4, pp. 644-669, 1985.
K. Murugesan and H. Okamoto, The collocation points of the fundamental solutions method for the potential problems, Computers and Mathematics with Applications, vol. 31, pp. 123-137, 1996.
A. Poullikkas, A. Karageorghis and G. Georgiou, The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions, Engineering Analysis with Boundary Elements, vol. 25, pp. 221-227, 2001.
D. L. Young, C. W. Chen, C. M. Fan, K. Murugesan and C. C. Tsai, The method of fundamental solutions for Stokes flow in a rectangular cavity with cylinders, European Journal of Mechanics B/Fluids, vol. 24, pp. 703-716, 2005.
C. S. Liu, A modified Trefftz method for two-dimensional Laplace equation considering the domain’s characteristic length, Computer Modeling in Engineering and Sciences, vol. 21, pp. 53-65, 2007.
C. S. Liu, W. Yeih and S. N. Atluri, On Solving the ill-conditioned system Ax=b: general-purpose conditioners obtained from the boundary-collocation solution of the Laplace equation, using Trefftz expansions with multiple length scales, Computer Modeling in Engineering and Sciences, vol. 44, pp. 281-311, 2009.
W. Yeih, C. S. Liu, C. L. Kuo and S. N. Atluri, On solving the direct/inverse Cauchy problems of Laplace equation in a multiply connected domain, using the generalized multiple-source-point boundary-collocation Trefftz method &; characteristic lengths, Computers Materials &; Continua, vol. 17, pp. 275-302, 2010.
C. M. Fan and H. H. Li, Solving the inverse Stokes problems by the modified collocation Trefftz method and Laplacian decomposition, Applied Mathematics and Computation, vol. 219, pp. 6520-6535, 2013.
C. M. Fan and H. F. Chan, The modified collocation Trefftz method and exponentially convergent scalar homotopy algorithm for the inverse boundary determination problem for the biharmonic equation, Journal of Mechanics, vol. 29, pp. 363-372, 2013.
S. M. Wong, Y.C. Hon and T.S. Li, A meshless multilayer model for a costal system by radial basis function, Computers and Mathematics with Applications, vol. 43, 585-605, 2002.
C. K. Lee, X. Liu and S. C. Fan, Local multiquadric approximation for solving boundary value problems, Computational Mechanics, vol. 30, pp. 396-409, 2003.
R. Vertnik and B. Šarler, Solution of incompressible turbulent flow by a mesh-free method, Computer Modeling in Engineering and Sciences, vol.44, no.1, pp.65-95, 2009.
G. Kosec and B. Šarler, Local RBF collocation method for Darcy flow, Computer Modeling in Engineering &; Sciences, vol. 25, pp. 197-207, 2008.
E. Divo and A. J. Kassab, An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer, ASME Journal of Heat Transfer, vol. 129, pp. 124-136, 2007.
H. F. Chan and C. M. Fan, The local radial basis function collocation method for solving two-dimensional inverse Cauchy problems, Numerical Heat Transfer, Part B, vol. 63, pp. 284-303, 2013.
C. M. Fan, C. S. Chien, H. F. Chan and C. L. Chiu, The local RBF collocation method for solving the double-diffusive natural convection in fluid-saturated porous media, International Journal of Heat and Mass Transfer, vol. 57, pp. 500-503, 2013.
C. M. Fan, C. H. Yang and M. H. Gu, Applications of the local RBF collocation method and the fictitious time integration method for Burgers’ equations, Procedia Engineering, vol. 79, pp. 569-574, 2014.
J. J. Benito, F. Urena and L. Gavete, Influence of several factors in the generalized finite difference method, Applied Mathematical Modelling, vol. 25, pp. 1039-1053, 2001.
L. Gavete, M. L. Gavete and J. J. Benito, Improvements of generalized finite difference method and comparison with other meshless method, Applied Mathematical Modelling, vol. 27, pp. 831-847, 2003.
J. J. Benito, F. Urena, L. Gavete and B. Alonso, Application of the generalized finite difference method to improve the approximated solution of pdes, Computer Modeling in Engineering and Sciences, vol. 38, pp. 39-58, 2008.
F. Urena, E. Salete, J. J. Benito and L. Gavete, Solving third and fourth order partial differential equations using GFDM: application to solve problems of plates, International Journal of Computer Mathematics, vol. 89, pp. 366-376, 2012.
H. F. Chan, C. M. Fan and C. W. Kuo, Generalized finite difference method for solving two-dimensional nonlinear obstacle problem, Engineering Analysis with Boundary Elements, vol. 37, pp. 1189-1196, 2013.
C. M. Fan and P. W. Li, Generalized finite difference method for solving two-dimensional Burgers’ equations, Procedia Engineering, vol. 79, pp. 55-60, 2014.
C. M. Fan, P. W. Li and W. Yeih, Generalized finite difference method for solving two-dimensional inverse Cauchy problems, Inverse Problems in Science and Engineering, vol. 23, pp. 737-759, 2015.
P. W. Li, C. M. Fan, C. Y. Chen and C. Y. Ku, Generalized finite difference method for numerical solutions of density-driven groundwater flows, Computer Modeling in Engineering and Sciences, vol. 101(5), pp. 319-350, 2014.
洪銘澤(2003),CPU平行粒子群最佳化應用於平面桁架結構最佳化設計,國立交通大學土木工程系碩士論文。林俊宏(2012),以有限體積法分析二維淺水波方程式並評估其平行化效能,國立臺灣海洋大學河海工程學系碩士學位論文。J. Hoeflinger, P. Alavilli, T. Jackson and B. Kuhn, Producing scalable performance with OpenMP: Experiments with two CFD applications, Parallel Computing, vol. 27, pp. 391-413, 2001.
W. Wei, O. al-Khayat and X. Cai, An OpenMP-enabled parallel simulator for particle transport in fluid flows, Procedia Computer Science, vol. 4, pp. 1475-1484, 2011.
R. D. Sandberg, Direct numerical simulations for flow and noise studies, Procedia Engineering, vol. 61, pp. 356-362, 2013.
R. Rossi, A. Larese, P. Dadvand and E. Oñate, An efficient edge-based level set finite element method for free surface flow problems, International Journal for Numerical Methods in Fluids, vol. 71, pp. 687-716, 2013
C. Couder-Castañeda, J. C. Ortiz-Alemán, M. G. Orozco-del-Castillo and M. Nava-Flores, Forward modeling of gravitational fields on hybrid multi-threaded cluster, Geofísica Internacional, vol. 54, pp. 31-48, 2015.
G. Kosec and M. Depolli, A. Rashkovska, R. Trobec, Super linear speedup in a local parallel meshless solution of thermo-fluid problems, Computer and Structures, vol. 133, pp. 30-38, 2014.
R. W. Fox, P. J. Pritchard and A. T. McDonald, Introduction to Fluid Mechanics, 7th ed. John Wiley &; Sons, Inc. 2008.
T. C. Papanastasiou, G. C. Georgiou and A. N. Alexandrou, Viscous Fluid Flow, CRC Press, United States of America.
彭國倫(2001),FORTRAN95程式設計,碁峰資訊,台北市。
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing, Cambridge University Press, United States of America, 1986.
R. Bronson, G. B. Costa and J. T. Saccoman, Linear Algebra 3rd ed., Elsevier, United States of America, 2014.
J. W. Demmel, J. R. Gilbert and X. S. Li, An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Analysis and Applications, vol. 20(4), pp. 915-952, 1999.
M. Hermanns, Parallel programming in Fortran 95 using OpenMP, School of Aeronautical Engineering, Spain, 2002.
D. C. Lo, D. L. Young and K. Murugesan, GDQ method for natural convection in a square cavity using velocity-vorticity formulation, Numerical Heat Transfer, Part B, vol. 47, pp. 321-341, 2005.
C. Shu, H. Ding and K. S. Yeo, Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method, Computer Modeling in Engineering &; Sciences, vol. 7, pp. 195-205, 2005.
Y. Shang, Y. He, D. W. Kim and X. Zhou, A new parallel finite element algorithm for the stationary Navier–Stokes equations, Finite Elements in Analysis and Design, vol. 47, pp. 1262-1279, 2011.
M. M. Gupta and J. C. Kalita, A new paradigm for solving Navier–Stokes equations: streamfunction–velocity formulation, Journal of Computational Physics, vol. 207, Issue 1, pp. 52-68, 2005.
賴威翔(2015),以局部化徑向基底函數配點法模擬流場相關問題與工程應用,國立臺灣海洋大學河海工程學系碩士學位論文。Y. C. Zhou, B. S. V. Patnaik, D. C. Wan and G. W. Wei, DSC solution for flow in a staggered double lid driven cavity, International Journal for Numerical Methods in Fluids, vol. 57, pp.211-234, 2003.
S. H. Meraji, A. Ghaheri1 and P. Malekzadeh, An efficient algorithm based on the differential quadrature method for solving Navier–Stokes equations, International Journal for Numerical Methods in Fluids, vol. 71, pp.422-445, 2012.
C. C. Douglas, G. Haase and U. Langer, A Tutorial on Elliptic PDE Solvers and Their Parallelization, Society for Industrial and Applied Mathematics, Philadelphia, United States of America, 2003.