跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/01/31 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李孟倫
研究生(外文):Lee, Meng-Lun
論文名稱:寡毛目纖毛蟲之接合行為-探討其系統分類與發生原因
論文名稱(外文):Conjugation in the marine oligotrich ciliates ( Ciliophora, Oligotrichida) --its systematic taxonomy and occurrence
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Chiang, Kuo-Ping
口試委員:胡清華陳仲吉
口試委員(外文):Hu, Chin-HwaChen, Chung-Chi
口試日期:2015-06-09
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境化學與生態研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:44
中文關鍵詞:寡毛目纖毛蟲接合分類接合原因
外文關鍵詞:Strombidiida ciliateconjugationtaxonomyconjugation occurrence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以蟲體外形、纖毛圖示及大小核變化等特徵觀察急游蟲屬纖毛蟲接合行為,並探討寡毛綱纖毛蟲系統分類之依據。儘管外形上彈跳蟲與寡毛目纖毛蟲極為相似,但是研究顯示寡毛目與舞毛目纖毛蟲有著極相似之接合過程,與彈跳蟲存在著些許的差異。上述結果說明著寡毛目與舞毛目纖毛蟲在接合行為中具有許多同源的祖徵。
培養實驗顯示當餌料分配比明顯下降至1x106 (bacteria/ciliate)時,蟲體隨即發生接合行為。培養實驗中餌料的濃度變化不大,而纖毛蟲接合行為結束後至該族群數量減少之天數大約介於16到18天之間,意謂著纖毛蟲族群少了接合行為,整個族群開始衰老,最終步入滅絕。研究顯示飢餓無法誘發急游蟲屬纖毛蟲行使接合,此結果與四膜蟲的接合行為誘發機制不同,推測可能受到生存壓力(餌料分配比急遽減少)誘發急游蟲屬纖毛蟲進行接合。

關鍵詞:寡毛目纖毛蟲(Strombidiida ciliate)、接合、分類、接合原因

We studied the conjugation process of oligotrich ciliates in the genus Strombidium (Order Oligotrichida,) by observing their morphology, infraciliature and nuclei, and discussed the systematics of the class Oligotrichea. The morphology of oligotrich ciliates is similar to that of Halteria sp. (Order Halteriida), hence they are grouped into the same suborder by morphologists, but however, oligotrich and choreotrich ciliates (Order Choreotrichida) are closely related according to the genetic analysis. In the present study, both oligotrich and choreotrich exhibit much similar conjugation processes, including the similar morphological and nuclear characters, indicating that both Oligotrichida and Choreotrichida ciliatesare closely plesiomorphic, therefore substantiate the results of genetic analysis.
The conjugation in oligotrich ciliates occurs when the ratio of prey to predator abundances is reduced to 1x106 in laboratory cultures. In our experiment, despite the stable abundance of the bacteria during the culture period was decreased evidently after 16-18 days of non-conjugation behavior in ciliates, indicating that the ciliate community was getting old and died without conjugation. Keeping starvation can induced conjugation in Tetrahymena rhermophile, but not in Strombidium as observed in the present study. We presumed henceforth that the conjugation behavior of oligotrich ciliates is induced by the decrease of the prey/predator ratio.

Keywords: Strombidiida ciliate, conjugation, taxonomy, conjugation occurrence



目錄
摘要 I
ABSTRACT II
目錄 III
表目錄 IV
圖目錄 V
1.前言 1
1.1海洋寡毛綱纖毛蟲的生態地位 1
1.2寡毛綱纖毛蟲分類系統概況 1
1.3寡毛綱纖毛蟲之接合過程研究概況 2
1.4寡毛目纖毛蟲接合生殖之發生原因 3
2.材料方法 4
2.1採樣地點、時間與採樣方法 4
2.2活體形態觀察與培養 4
2.3蛋白銀染色法所需藥劑配製 4
2.4蟲體特徵紀錄及計數 7
2.5 DAPI染色實驗方法 7
2.6 Strombidium sp.接合培養與計數 7
2.7 Strombidium sp.飢餓是否誘發接合發生實驗 8
3.結果 9
3.1急游蟲屬之分類與Strombidium sp.形態及接合描述 9
3.2 Strombidium sp.接合過程描述 10
3.3小核染色結果 14
3.4 Strombidium sp.接合培養與計數結果 14
3.5 Strombidium sp.飢餓是否誘發接合發生實驗結果 14
4.討論 16
4.1彈跳蟲、舞毛目纖毛蟲與寡毛目纖毛蟲接合過程外部形態之比較 16
4.2彈跳蟲、舞毛目與寡毛目纖毛蟲接合過程小核分裂變化之比較 17
4.3寡毛綱纖毛蟲接合特徵之比較 18
4.4寡毛目纖毛蟲 Strombidium.sp.接合發生原因探討 19
4.5寡毛目纖毛蟲 Strombidium.sp.族群死亡可能原因探討 20
參考文獻 21

表目錄
表一、寡毛綱纖毛蟲接合特性,顯示其親緣關係(Agatha 2009) 25


圖目錄
圖一、Strombidium sp.蛋白銀染色後 (A、B)之形態特徵。(A)腹面觀,呈現蟲體之整體外型、口圍帶、大小核及腰動基列;(B)背面觀,呈現蟲體之領區小膜與腰動基列。CM,領區小膜;EM,口側膜;Ma,大核;Mi,小核;GK,腰動基列;VK,腹動基列。比例尺30µm (A-B)。 26
圖二、Strombidium sp.接合過程Stage1,虛線為背面之構造。箭頭為新生口原基比例尺30µm 。 27
圖三、Strombidium sp.接合過程Stage2,虛線為背面之構造。新生口原基發展較完整(箭頭A),腰動基列已斷一小開口(箭頭B)比例尺30µm 。 28
圖四、Strombidium sp.接合過程Stage3-1,虛線為背面之構造。新生口原基趨於成熟(箭頭A),大核開始降解(箭頭B),小核則由2顆轉成4顆(箭頭C),比例尺30µm 。 29
圖五、Strombidium sp.接合過程Stage3-2,虛線為背面之構造。新生口原基前後兩端往蟲體右側延伸,並呈C形分布於蟲體左上方(箭頭A),大核持續分解破裂(箭頭B),腰動基列於腹部斷開的開口更大(箭頭C),舊領區小膜減少至7-8片(箭頭D),小核(箭頭E,此圖僅1顆)比例尺30 µm。 30
圖六、Strombidium sp.接合過程Stage4-1,虛線為背面之構造。新生口原基由蟲體左上方突出,形成一完整成熟的口圍帶(箭頭A),蟲間腹部銜接處末端分開更明顯(箭頭B),比例尺30µm 。 31
圖七、Strombidium sp.接合過程Stage4-2,虛線為背面之構造(俯視圖)。新生口原基持續往蟲體前端移動(箭頭A),大核明顯縮小(箭頭B),比例尺30µm 。 32
圖八、Strombidium sp.接合過程Stage4-3,虛線為背面之構造。新生口原基與舊領區小膜分別處於蟲體前端兩側(箭頭A),其中1小核開始形成大核(箭頭B),比例尺30µm 。 33
圖九、Strombidium sp.接合過程Stage4-4,虛線為背面之構造。新生口原基往上移至蟲體最前端(箭頭A),舊領區小膜則移至新生口原基的左腹側(箭頭B),比例尺30µm 。 34
圖十、Strombidium sp.接合過程Stage4-4,虛線為背面之構造。新生口原基往上移至蟲體最前端(箭頭A),舊領區小膜則移至新生口原基的左腹側(箭頭B),比例尺30µm 。 35
圖十一、Strombidium sp.接合過程Stage ex,虛線為背面之構造。新生口原基坐落於蟲體的前端取代舊口圍帶(箭頭A),舊領區小膜位於新生口原基的腹側下緣(箭頭B),腰動基列尚未恢復成原始封閉狀(箭頭C),新大核已成熟(箭頭D),比例尺30µm 。 36
圖十二、Strombidium sp.接合過程DAPI染色結果,箭頭所指為小核。 37
圖十三、Strombidium sp.接合過程小核變化各階段示意圖。 38
圖十四、Strombidium.sp.接合培養與計數(A、B、C),3個瓶子所得到的培養結果,左側為蟲體數量統計,右側為接合所占總量的百分比。 39
圖十五、3個培養瓶內細菌數量統計結果(A、B、C),右側為原始數量,左側為 將細菌數量與蟲體數量放在一起。 40
圖十六、A,彈跳蟲Halteria grandinella接合過程(Agatha 2009);B,舞毛目纖毛蟲Pelagostrobilidium sp接合過程(Ota and Taniguchi 2002);C本次研究寡毛目纖毛蟲Strombidium.sp接合過程。由左至右依序為接合開始,接合中期,接合末期,分裂後。 41
圖十七、A彈跳蟲Halteria grandinella接合過程小核變化圖(Agatha 2009),B,舞毛目纖毛蟲Pelagostrobilidium sp接合過程小核變化圖(Ota and Taniguchi 2002),C本次研究寡毛目纖毛蟲Strombidium.sp接合過程 42
圖十八、寡毛目纖毛蟲Strombidium.sp培養實驗所得之成長率,黑色線為間隔一天所得結果,橘色虛線為間格2天所得結果,橘色箭頭由左至有第一個為接合發生第一天,第二個為接合數量百分比高峰期,第三個為接合發生最後一天。 43
圖十九、寡毛目纖毛蟲Strombidium.sp培養實驗所得之餌料分配比。以細菌現存量除以纖毛蟲數量,所得之結果,橘色箭頭為接合行為開始發生時間。 44

Agatha, S. 2011. Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water. PLoS ONE, 6:e22466.
Agatha, S. &; Strüder-Kypke, M. C. 2014. What Morphology and Molecules Tell Us about the Evolution of Oligotrichea (Alveolata, Ciliophora). Acta Adriat., 53:77~90.
Agatha, S. &; Foissner, W. 2009. Conjugation in the spirotrich ciliate Halteria grandinella (Müller, 1773) Dujardin, 1841 (Protozoa, Ciliophora) and its phylogenetic implications. European Journal of Protistology, 45:51-63.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. &; Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10:257-263.
Blackburn, E. H. 1994. Telomeres: no end in sight. . Cell, 77:621-623.
Chiang, K. P., Lin, C. Y., Lee, C. H., Shiah, F. K. &; Chang, J. 2003. The coupling of oligotrich ciliate populations and hydrography in the East China Sea: spatial and temporal variations. Deep Sea Research Part II: Topical Studies in Oceanography, 50:1279-1293.
Claparède, E. &; Lachmann, J. 1858. Études sur les infusoires et les rhizopodes. Mém. Inst. Natn. Génev, 5:1-260 (year 1857).
Foissner, W., Skogstad, A. &; Pratt, J. R. 1988. Morphology and infraciliature of Trochiliopsis australis n. sp., Pelagohalteria viridis (Fromentel, 1876) n. g., n. comb., and Strobilidium lacustris n. sp. (Protozoa, Ciliophora). The Journal of Protozoology, 35:489-497.
Gold, K. &; Pollingher, U. 1971. Microgamete formation and the growth rate of Tintinnopsis beroidea. Marine Biology, 11:324-329.
Kahl, A. 1932. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Dtl, 25:399-650.
Karrer, K. 2012. Nuclear dualism. Methods Cell Biol, 109:29–52.
Krainer, K.-H. 1991. Contributions to the morphology, infraciliature and ecology of the planktonic ciliates Strombidium pelagicum n. sp., Pelagostrombidium mirabile (Penard, 1916) n. g., n. comb., and Pelagostrombidium fallax (Zacharias, 1896) n. g., n. comb. (Ciliophora, Oligotrichida). European Journal of Protistology, 27:60-70.
Lalli, C. M. &; Parsons, T. R. 1997. Biological Oceanography. An Introduction. 2nd ed., Butterworth Heinmann, Oxford.
Lancelot, C. 1979. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar Ecol Prog Ser, 1:179-186.
Larsson, U. &; Hagström, A. 1982. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Marine Biology, 67:57-70.
Laval-Peuto, M. 1994. Classe des Oligotrichea Bütschli, 1887. Ordre des Tintinnida Kofoid et Campbell, 1929. In: Puytorac, P. de (Ed.), Traité de Zoologie. Anatomie, Systématique, Biologie. II. Infusoires Ciliés. 2. Systématique. Masson, Paris, Milan, Barcelona, pp. 181-219.
Laval-Peuto, M. 1983. Sexual reproduction in Favella ehrenbergii (Ciliophora, Tintinnina). Taxonomical implications. Protistologica, 19:503-512 (with French summary).
Liu, W., Yi, Z., Warren, A., Al-Rasheid, K. A. S., Al-Farraj, S. A., Lin, X. &; Song, W. 2011. Taxonomy, morphology and molecular systematics of a new oligotrich ciliate, Williophrya maedai gen. nov., sp. nov., with redescriptions of Strombidium basimorphum and Pseudotontonia simplicidens (Protozoa, Ciliophora, Oligotrichia). Systematics and Biodiversity, 9:247-258.
Lynn, D. H. &; Small, E. B. 2002. Phylum Ciliophora Doflein, 1901. In: Lee, J.J., Leedale, G.F., Bradbury, P. (Eds.), An Illustrated Guide to the Protozoa, second ed. Organisms Traditionally Referred to as Protozoa, or Newly Discovered Groups. Society of Protozoologists, 2000, Allen Press, Lawrence, pp. 371-656.
Lynn, D. H., Roff, J. C. &; Hopcroft, R. R. 1991a. Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Marine Biology, 110:437-448.
Lynn, D. H., Montagnes, D. J. S., Dale, T., Gilron, G. L. &; Strom, S. L. 1991b. A reassessment of the genus Strombidinopsis (Ciliophora, Choreotrichida) with descriptions of four new planktonic species and remarks on its taxonomy and phylogeny. Journal Marine Biological Association of the United Kingdom, 71:597-612.
Maupas, E. 1889. La rajeunissement karyogamique chez les ciliés. Archives de Zoologie Expérimentale et Générale, 7:149-517.
McManus, G. B., Schoener, D. M. &; Haberlandt, K. 2012. Chloroplast symbiosis in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles. Frontiers in Microbiology, 3:Article 321.
Montagnes, D. J. S. 1996. Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Marine Ecology Progress Series, 130:241-254.
Nanney, D. L. 1953. Nucleo-cytoplasmic interaction during conjugation in Tetrahymena. The Biological Bulletin:133-148.
Ota, T. &; Taniguchi, A. 2003a. Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-sea Res. II, 50:423-442.
Orias, E., Cervantes, M. D. &; Hamilton, E. P. 2011. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Research in Microbiology, 162:578-586.
Ota, T. &; Taniguchi, A. 2003b. Conjugation in the marine aloricate oligotrich Pelagostrobilidium (Ciliophora: Oligotrichia). European Journal of Protistology, 39:149-160.
Petz, W. &; Foissner, W. 1992. Morphology and morphogenesis of Strobilidium caudatum (Fromentel), Meseres corlissi n. sp., Halteria grandinella (Müller),and Strombidium rehwaldi n. sp., and a proposed phylogenetic system for oligotrich ciliates (Protozoa, Ciliophora). The Journal of Protozoology, 39:159-176.
Petz, W., Song, W. &; Wilbert, N. 1995. Taxonomy and Ecology of the Ciliate Fauna (Protozoa, Ciliophora) in the Endopagial and Pelagial of the Weddell Sea, Antarctica. Stapfia, 40:1-223.
Small, E. B. &; Lynn, D. H. 1985. Phylum Ciliophora Doflein, 1901. In: Lee, J. J., Hutner, S. H. &; Bovee, E. C. (eds.), An Illustrated Guide to the Protozoa. Society of Protozoologists, Allen Press, Lawrence, Kansas, pp. 393-575.
Smith-Sonneborn, J., Klass, M. &; Cotton, D. 1974. Parental age and life span versus progeny life span in Paramecium. J. Cell Sci., 14:691-699.
Song, W. &; Packroff, G. 1997. Taxonomische Untersuchungen an marinen Ciliaten aus China mit Beschreibungen von zwei neuen Arten, Strombidium globosaneum nov. spec. und Strombidium platum nov. spec. (Protozoa, Ciliophora). Archiv Für Protistenkunde, 147:331-360.
Song, W. &; Bradbury, P. C. 1998. Studies on some new and rare reported marine planktonic ciliates (Ciliophora: Oligotrichia) from coastal waters in north China. Journal of the Marine Biological Association of the United Kingdom, 78:767-794.
Stoecker, D., Davis, L. H. &; Provan, A. 1983. Growth of Favella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Marine Biology, 75:293-302.
Stoecker, D. K. &; Silver, M. W. 1990. Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora: Oligotrichida). Marine Biology, 107:491-502.
Strüder-Kypke, M. C. &; Lynn, D. H. 2003. Sequence analyses of the small subunit rRNA gene confirm the paraphyly of oligotrich ciliates sensu lato and support the monophyly of the subclasses Oligotrichia and Choreotrichia (Ciliophora, Spirotrichea). Journal of Zoology (London), 260:87-97.
Tsai, S. F., Xu, D., Chung, C. C. &; Chiang, K. P. 2008. Parastrombidinopsis minima n. sp. (Ciliophora: Oligotrichia) from the coastal waters of northeastern Taiwan: Morphology and small subunit ribosomal DNA sequence. The Journal of Eukaryotic Microbiology, 55:567-573.
Washburn, J. O., Mercer, D. R. &; Anderson, J. R. 1991. Regulatory role of parasites: Impact on host population shifts with resource availability. Science, New series, 253:185-188.
Yu, G.-L., Bradley, J. D., Attardi, L. D. &; Blackburn, E. H. 1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerse RNAs. Nature, 344:126-132.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top